

Prosys Sentrol 4 Tutorial

Hello world!

This Tutorial shows you the very basics of Prosys Sentrol and also guides you to your

first Sentrol applications.

Help Files & PDF

You might consider looking at additional documentation in the Sentrol Help
1
 while

you read these lessons. Start by looking at the ‘Sentrol Framework’ section, which

talks about the main ideas and concepts behind the design and usage of the component

set. Also note that this file is available as PDF from http://www.prosys.fi/downloads.html

About the Samples

The sample projects created in this tutorial are installed along with the product. You

will find them under <installation directory>\Tutorials. Although

this document only contains listings in Delphi language, you will also find the

respective C++ examples from the installed projects (except for a couple of units).

Note that there a couple of additional samples also in <installation
directory>\Samples.

Compiler versions

There are specific projects for different compilers in the Tutorial project directories.

Look for the following project files, depending on your compiler:

Compiler Project File

Delphi 5 Project1D50.dpr or Project1.dpr

C++Builder 5 Project1C50.bpr

Delphi 6 & 7 Project1.dpr

C++Builder 6 Project1.bpr

Delphi 2006 Project1.bdsproj

C++Builder 2006 Project1C.bdsproj

Delphi 2007 Project1.dproj

C++Builder 2007 Project1C.cbproj

Vista Notes

Prosys Sentrol 4 should install fine in Windows Vista, if you just make sure that you

get to install it in administrator mode.

The tutorial and sample projects are also installed under the Prosys Sentrol installation

directory, which is located in “C:\Program Files\” (or similar). In Vista, normal users

are not allowed to write in these directories. So before you try to compile your tutorial

and sample applications, you must edit the security settings, so that you are enabled to

write in these directories.

1
 You can find it from the Delphi Help (Contents) after installation.

Prosys Sentrol 4 Tutorial

 2

Table of Contents

Lesson 1. Introduction to Basics 3
Stage 1.1 Variables 3
Stage 1.2 GUI Controls 4
Stage 1.3 Linking Sentrol components 5
Stage 1.4 Buttons 6
Stage 1.5 Extra: Composite Controls 7
Stage 1.6 OnChange and OnValueChange Events 8

Lesson 2. OPC Client connection 9
Stage 2.1 OPC Components 9
Stage 2.2 Connecting to the OPC server 9
Stage 2.3 Defining the OPC Connector 11
Stage 2.4 Linking Variables to OPC Items 12
Stage 2.5 CSV Files 13
Stage 2.6 Copy & Paste to Excel 13
Stage 2.7 Create New Variables for OPC Items 13
Stage 2.8 Dynamic configurations 14

Lesson 3. Trends 16
Stage 3.1 PsHistoryArray: Online Trend Buffer 16
Stage 3.2 PsChart: Multipurpose Variable Charting 17

Lesson 4. Persistent Storage 21
Stage 4.1 Define a Storage 21
Stage 4.2 Object Persistence in Storage Tables 21
Stage 4.3 Link Variables to Any Table 23
Stage 4.4 History Table 25
Stage 4.5 Sample 26

Lesson 5. Byte Arrays 28
Stage 5.1 Usage of Byte Array 28
Stage 5.2 Usage of ByteArrayConnector 29

Lesson 6. Functions 31
Stage 6.1 TPsFunction 31
Stage 6.2 TPsParserFunction 32
Stage 6.3 TPsSumFunction 32
Stage 6.4 The sample application 33

Lesson 7. Animators 34
Stage 7.1 Color Animation 35
Stage 7.2 Position & Size Animations 36
Stage 7.3 The animation sample in action 37

Lesson 8. OPC Server 38
Stage 8.1 Adding OPC Server to your application 38
Stage 8.2 Customization 39

Lesson 9. Creating components at run-time 43
Stage 9.1 Adding Links to Connectors 43
Stage 9.2 “Helper” objects 43
Stage 9.3 Sample project 43

Prosys Sentrol 4 Tutorial

 3

Lesson 1. Introduction to Basics

The objective of this lesson is to create a simple application that presents the

information flow between Sentrol components.

Stage 1.1 Variables

Begin a New Application from the File Menu. You will see a single form (Form1),

which you can use to draw the visible and non-visible components from the Delphi

palette. If you are not familiar with the Delphi environment, yet, you should take

some time to learn the basics with it first.

The Sentrol components are located on several pages in the Delphi component palette:

Sentrol Vars Variable and function components

Sentrol Controls GUI Controls for visual display

Sentrol Anims Simple animation effects

Sentrol Functions On-line function components

Sentrol OPC OPC Client connections

Sentrol Storage Database connections

As you can see from the Sentrol Framework description in the Help file, all Sentrol

activities are based on Variable data. You will define the process data using variable

components. After that you can specify how that data is used: where it comes from

(the OPC components), what is done with it (Vars, Functions) how it is displayed (the

Controls, Anims) and how it is stored (the Storage).

Figure 1. Sentrol components are on several palettes – the Variables are the main

components.

Once you have located the ‘Sentrol Vars’, select a PsFloat from it and drop it on the

form. PsFloat is the variable type that you will use most often. It is suited for

standard analog signals and other floating point data. Check also the PsBool, which

you can best use with binary signals. You may also take a look at the other variable

types, but we will do with a single float for this first application.

Once you have the component on the form, you can set its design time properties with

the Object Inspector.

PsVariant PsBool PsFloat PsInteger PsState PsBitset PsString PsDateTime

PsFloatArray PsHistoryArray PsByteArray PsByteArrayConnector

Prosys Sentrol 4 Tutorial

 4

Figure 2. Properties of PsFloat1.

Set the value of RangeMax to 200, AlarmHigh to 150 and AlarmLow to 50. The alarm

limits are used only in Lesson 3, but you should already set AlarmMode as well. Also

you might like to limit the number of decimals shown on screen with DisplayFormat.

See Figure 3, for an example and refer to Sentrol help for the format
2
.

Remember that you can press F1 anywhere in Delphi and it locates the Help

description for the component that you have currently selected.

Stage 1.2 GUI Controls

After having modeled the measurement data in Stage 1.2, you can go and design the

user interface!

Open Sentrol Controls from the Delphi component palette. Drop a PsLabel,

PsPanel and PsEdit component on the Form as in Figure 4.

Figure 3. The Sentrol Controls are for displaying and modifying Variable data.

2
 The database fields use the same format. See TNumericField.DisplayFormat, for an example.

PsLabel PsPanel PsEdit PsCheckBox PsRadioButton PsComboBox PsImage PsChart

PsButton PsBitBtn PsSpeedButton PsDisplayBox PsEditPanel PsBitsetView

PsDisplayPanel PsComboPanel PsEventView

PsDateTimePicker

Prosys Sentrol 4 Tutorial

 5

Figure 4. PsLabel, PsPanel and PsEdit placed on Form1 with PsFloat1.
3

The GUI Controls have all the same properties that the standard Delphi VCL controls

and in addition they know how to deal with Variable data.

Stage 1.3 Linking Sentrol components

All the GUI controls work the same way: they have a Variable and VarProp property,

which you use to define the Variable data that they show or manipulate.

Select the PsPanel1, which you dropped on Form1 and locate the property called

Variable in the Object Inspector. Open the drop-down list and select PsFloat1 from

the list (you should not be able to miss it!). Repeat this with PsEdit1 and PsLabel1.

Figure 5. Setting the Variable and VarProp with the Object Inspector. All

Variables in the active form are shown on the selection list. Also components in

other forms and data modules will be shown, after the units are used in the form

(from the menu, use File->Use Unit).

Now, select the PsLabel1 and change its VarProp from vpValue to vpCaption. If

you want, you can go and change the caption of PsFloat1 to your choice.

You can also connect to other run-time properties of the Variable by changing the

VarProp from the default of vpValue. This way you can define generic fields in the

form, which can then be switched at run-time to display or modify any Variable – or

any VarProp. Note however, that not all VarProps are useful with all variable types.

3
 ‘#NULL’ means that the components are not connected to any Variable

Prosys Sentrol 4 Tutorial

 6

Figure 6. The controls show where they are connected to at design time.

Now you are ready to compile the program. Values fed in PsEdit1 are seen in

PsPanel1 once you press <Enter>.

Figure 7. The first Sentrol application created in Lesson 1.

Stage 1.4 Buttons

To write values to the variables, you can use the edit box – or buttons. Buttons come

in different flavors, corresponding to different Win Controls: TPsButton, TPsBitBtn,

TPsSpeedButton. And there is also a TPsRadioButton, TPsCheckBox and

TPsComboBox! In fact they all behave a bit differently, see the available properties and

the help for details.

The idea in all the buttons is the same: You use a button to set a variable to a certain

value. So, first connect the button to the variable you want to set, the same way that

you did with the label, panel and edit box. And then, define the value to be set, in

ClickValue.

Prosys Sentrol 4 Tutorial

 7

Figure 8. Defining ClickValue for a button. Note that if you arrange the Object

Inspector by Category, you can see the Sentrol properties grouped together!

Run the application – and use the button to reset the variable to 0!

Stage 1.5 Extra: Composite Controls

Drop a PsDisplayBox, PsDisplayPanel, PsEditPanel – and possibly other

controls on the form, select a Variable and VarProp for each and see how they

behave!

Figure 9. Object Inspector arranged by category helps to locate the special

properties of the Sentrol components. Since Delphi 2005, the properties are

arranged by category already by default.

Prosys Sentrol 4 Tutorial

 8

Figure 10. The extended application with some composite controls on it!

Stage 1.6 OnChange and OnValueChange Events

The variables also have event handlers that you can use to catch changes when you

need to trigger actions in your own code. You can use TPsVar.OnChange to react to

changes in any VarProp, but if you are only interested in the Value changes, then you

will do better with TPsVar.OnValueChange.

For example:

procedure TForm1Ex.PsFloat1Change(Sender: TPsVar; props:

TPsVarPropTypes);

begin

 // whenever the Caption or Value changes, update the Form1.Caption

 if (vpValue in props) or (vpCaption in props) then

 Caption := Format('Form1Ex - %s=%s',

[Sender.Caption, Sender.ValueAsString]);

end;

So, in OnChange handler you should filter the interesting events yourself, as it will be

called whenever any VarProp changes – and the Value, for example, may still be

unset.

And to catch changes that are about to occur, you can also use OnChanging!

Prosys Sentrol 4 Tutorial

 9

Lesson 2. OPC Client connection

The objective of this lesson is to read data from an OPC-server using Sentrol OPC

components and the application created in Lesson 1.

Stage 2.1 OPC Components

Continue from Lesson 1. Locate a PsOPCServer and a PsOPCConnector from the

Sentrol OPC palette and drop them on the Form.

Figure 11. OPC components in Form1.

The PsOPCServer is used to define a connection to any OPC Data Access server and

the PsOPCConnector is used to define how the OPC Items in the Server map to the

variables in the application.

Stage 2.2 Connecting to the OPC server

Select the PsOPCServer1 component on the form. Select the ServerName property in

the Object Inspector. If there are OPC Servers installed in your PC
4
, they will be seen

in the drop-down list (see Figure 12). Pick one. You can connect to the server already

at design time, by setting the Connected property to True.

Figure 12. Select the OPC Server to connect to from the combo box – or just

enter the ProgID (or CLSID) for the server.

4
 If you don’t have any OPC Servers available, go and get a free simulation server from Prosys

<http://www.prosys.fi/downloads.html>

Prosys Sentrol 4 Tutorial

 10

You can also connect to remote OPC servers – just set the Host property before

setting the ServerName. You must, however, be allowed to connect to the other host

by DCOM and you will also need to allow data transfer back from that host to your

local host. Check the OPC Foundation White Papers at

http://www.opcfoundation.org/Downloads.aspx?CM=1&CN=KEY&CI=282 for how to do this, if

you are not familiar with it.

Since Sentrol 4, you can also define additional user credentials for remote access. Set

UseCredentials=True and define the username and password to Credentials.

Figure 13. Defining alternate user credentials for remote access.

Prosys Sentrol 4 Tutorial

 11

Stage 2.3 Defining the OPC Connector

Next, we will define the mapping between the OPC items in the server and the

variables in our application.

Select the PsOPCConnector1 component that you have on the form.

Figure 14. Properties of PsOPCConnector.

Use the Object Inspector to set Active, Async and AsyncWrite to True

(asynchronous connections are preferred to synchronous, for efficiency, but you may

also choose to use synchronous data transfer). Finally, set Server to PsOPCServer1.

Prosys Sentrol 4 Tutorial

 12

Stage 2.4 Linking Variables to OPC Items

Next, you can define Links. Click the small button to the right of the property value

box (the one with three dots in it) and the OPC Links Editor opens (Figure 15).

Figure 15. Links Editor for PsOPCConnector1. The editor is used to define how

OPC Items are linked to the Sentrol Variables.

Add a new link with the Add OPC Items -button. The OPC Address Space Browser

(see Figure 16) opens with a tree view that contains the address space of the

connected OPC Server. Select a branch from the left and an item from the right (in

this example we have used the Prosys Simulation OPC server). The OPC Item ID

should appear in the edit box at the top of the dialogue. Press OK to accept the

selection.

Figure 16. Selecting the OPC Items from the OPC server address space.

Once you are back at the Links Editor, set Variable for the selected link to

PsFloat1. You get a drop-down list when you click the Variable cell in the grid.

Note! Unless you define the connector to be ReadOnly, it will both read and write

values to the OPC server automatically, whenever the other one changes (if the

variable values in your application are changed, they will be written to the OPC

server).

Note: You can

select multiple

items from the list

and add them all at

once!

Add, Delete, Load, Save, Edit OPC ItemID, Add OPC Items, Create Variables

Prosys Sentrol 4 Tutorial

 13

Figure 17. Defining the Variable for the link.

Close the Links Editor. Run the application. If you got everything right, you should

see values updating on the panel as in Figure 18.

Figure 18. Application created in Lesson 2. You can change the value from the

edit, to make the connector write the value to the OPC server. You will notice

that the simulation in the server continues from the new value!

Stage 2.5 CSV Files

You can save and load the links from CSV files – and use other applications to

modify the configuration. Use the Load and Save buttons in the Editor toolbar.

The CSV format of the used files is as follows
5
:

Variable;VarProp;AccessPath;Active;DataType;IsArray;ItemID;ScaleFactor;ScaleOffset

Form1.PsFloat1;vpValue;;True;vdtDouble;False;Triangle.PsFloat1;1;0

;vpValue;;True;vdtInteger;False;Triangle.PsInteger1;1;0

Note: When you load CSV files, make sure that the variables you refer to, already

exist in the project!

Stage 2.6 Copy & Paste to Excel

The best way to handle the data, with for example, Excel can be with the CSV files,

but you can also select separate lines to copy and paste between the editor and Excel.

Stage 2.7 Create New Variables for OPC Items

Did you notice the Create Variables button in the Editor Toolbar?!

It opens a dialog that lets you define which kind of variables you would like to create

for the OPC Items you just brought from the address space. By default it will try to

use the OPC Item DataTypes for selecting the appropriate variable type for each item.

The Advanced Options define how the components will appear on the form or data

module and how they are named.

5
 The CSV separator is defined in Windows Regional Settings; in this example it is ‘;’.

Prosys Sentrol 4 Tutorial

 14

Figure 19. Create Variables Dialog.

The new variables appear on the form – and are linked to the OPC Items!

Figure 20. The newly created variables are linked to the respective OPC Items.

Stage 2.8 Dynamic configurations

If you have noted that all the configurations are done at design-time, and wonder if

the same could be done more dynamically at run-time only, please consult Lesson 9.

Stage 2.9 COM Threading Models

Because OPC is based on Microsoft COM technology, your application is actually a

COM client application. You should therefore also be aware of the different

threading models supported by COM.

The default threading model is the single threaded, but for OPC communication the

recommended setting is the multi-threaded (also called “free threaded”) model. It

ensures that data callbacks from the OPC server get through to your application

without delays in all situations.

Fortunately, defining the threading model is easy in Delphi; you can simply set the

value of CoInitFlags at your project source, for example as follows:

program Project1;

uses

 ActiveX, // defines COINIT_* constants

 ComObj, // defines the CoInitFlags variable

Prosys Sentrol 4 Tutorial

 15

 Forms,

 Unit1 in 'Unit1.pas' {Form1};

{$R *.RES}

begin

 // Define the COM threading model

 CoInitFlags := COINIT_MULTITHREADED;

 Application.Initialize;

 Application.CreateForm(TForm1, Form1);

 Application.Run;

end.

See the Help for more information on CoInitFlags.
6

6
 In C++ Builder, Help is available under "multi-thread apartment threading model", and the necessary

include files are ”objbase.h” and ”activex.hpp”.

Prosys Sentrol 4 Tutorial

 16

Lesson 3. Trends
The objective of this lesson is to draw a trend of a variable. Again we will continue

with the application created in Lessons 1 and 2.

The trends are handled in two ways: PsHistoryArray (Sentrol Vars) is used to keep a

finite length of Variable history for display and analysis (e.g. sliding average). On the

other hand, PsHistorian (Sentrol Storage) is used to define a persistent, long-term

storage of variable values. A third component, the PsChart (Sentrol Controls), is used

to display history data on screen
7
.

Stage 3.1 PsHistoryArray: Online Trend Buffer

We will continue with the project from Lesson2. First, enlarge the form a little to

make room for the chart. Then drop a PsHistoryArray (Sentrol Vars) and a PsChart

(Sentrol Controls) on the form.

Figure 21. PsHistoryArray and PsChart added on form. The chart does not

display anything until a variable is linked to it. The edit boxes for limits are used

to modify the alarm limits at run-time.

Connect PsFloat1 to PsHistoryArray1 by setting the Variable property with the

Object Inspector.

Also set Circular to True and Capacity to 60, which sets the array length to a

minute (equals to Capacity * SampleWidth [in milliseconds]).

The Range and Alarm limits are copied from the variable, when VarRange and

VarSpecs are set. You must, however, define AlarmMode by yourself.

7
 Actually, you can also use PsChart to display any variable values, although only PsFloat and

PsFloatArray are currently meaningful in addition to PsHistoryArray.

Prosys Sentrol 4 Tutorial

 17

set these

set this

Copied from

Variable (if

VarRange is True)

Copied from

Variable (if

VarSpecs is True)

Figure 22. Setting PsHistoryArray to keep an online trend of PsFloat1 for the

last minute.

Stage 3.2 PsChart: Multipurpose Variable Charting

Next select the chart, which is already on the form. First you must add one series on

the chart:

Prosys Sentrol 4 Tutorial

 18

Double click Series…

…and add a new Series with the Collection Editor. Select

PsHistoryArray1 for Variable.

Figure 23. Chart properties. Open the Series to get the Series Collection Editor.

You can define any number of series to draw. Each can be connected to any

variable.

Last, change the PsEdits to modify the AlarmHigh and AlarmLow of PsFloat1: you

should be able to modify the limits at runtime!

Compile and run the application. You will see a variable trend updating in the chart.

Figure 24. Trend curve in the application of Lesson 3.

Prosys Sentrol 4 Tutorial

 19

Figure 25. Another trend style. Here Orientation = orVertical, Series.Fill.Style =

bsClear, Series.Line.Width = 2, XAxis.DateTimeFormat=’hh:mm:ss’,

XAxis.Width = 50, XAxis.Mirror=True and YAxis.OtherSide=True. Go ahead

and try!

3.2.1 Trend time scale

The axes are by default aligned to the range of the data, i.e. Y-axis runs from

Variable.RangeMin to RangeMax and X-axis to the Positions of the variable – or

time interval of a HistoryArray. But for trending purposes, it is best to specify

XAxis.AlignMin = aaInterval – and use Interval or IntervalMs to define a fixed

time interval for the axis. In this case, the length of the X-axis will be fixed, and it

won’t stretch from a narrow to full trend interval as new data is appended to the

history array, as is otherwise the case.

In this context, it is also better to set the TickMode to tmInterval and define a good

interval into TickInterval or TickIntervalMs. See Figure 26.

Prosys Sentrol 4 Tutorial

 20

Figure 26. Check the marked properties (the arrows) to define a fixed Interval in

the X-Axis. The sample application demonstrates this and also the trend of alarm

limits!

Prosys Sentrol 4 Tutorial

 21

Lesson 4. Persistent Storage

The function of the Sentrol Storage components is to enable connections between all

database types and tables and Sentrol Variables.

The current set includes several storage variants, for specific database drivers, such as

PsBDEStorage for BDE and PsSQLStorage or dbExpress
8
. The idea is that the other

components in the Sentrol Storage palette will function with any Storage component –

and you will be free to choose the database driver you like to use.

To link your variables into the database, you have two components: the generic

PsStorageConnector, which defines correspondences between variable props and

database fields; and PsHistorian, which is used for recording variable histories.

Stage 4.1 Define a Storage

Drop the PsBDEStorage or PsSQLStorage9 (Sentrol Storage) on the form and rename

it as Storage1. Also add a TDatabase or TSQLConnection component, respectively, to

define the DB connection. In this example, we use the IBLocal database, which is

included in Delphi installation.

Set PsBDEStorage.DatabaseName or PsSQLStorage.SQLConnection to point to the

DB connection component from the drop-down list.

4.1.1 DatabaseProduct

In order to be able to create tables (see below) the DatabaseProduct that the storage

component is connecting to, must be defined. This enables correct SQL syntax and

data types to be used. Currently, Sentrol supports Interbase/Firebird (all versions), MS

SQL Server (all versions) and MS Access (all versions).

Note: You can still use the storage components with any database that is supported

with the mentioned database drivers. You just cannot use the automatic table creation

feature for these databases.

Stage 4.2 Object Persistence in Storage Tables

The Storage components can also be used to manage database tables. This includes:

• Creating and dropping tables

• Adding and dropping columns

• Executing statements: insert, update, select, etc.

• Storing object data in tables

• Creating objects from the tables!

These operations are all independent of the storage variant you choose (and therefore

also of the DB driver). You only need to define the DatabaseProduct for the Storage,

so that it can use the correct SQL syntax for your database.

8
 ADO, IBExpress are also supported (and ZeosDBO, which requires that you install the ZeosDBO

components first), if the respective drivers are available in your Delphi installation.

9
 SQLStorage uses dbExpress, which is not available in Delphi/C++Builder 5!

Prosys Sentrol 4 Tutorial

 22

See the help for TPsCustomStorage, TPsStorageRepository as well as

TPsStorageTable, TPsObjectTable and TPsComponentTable on what is

available.

4.2.1 Variable tables

By default, the storage components define three tables for storing variables and the

related information. The tables are defined in the following properties:

• ModulesTable for adding information of DataModules and Forms in the

application

• VariablesTable for adding information of all variables in your application to be

stored in the database

• VarPropsTable for just declaring the VarProp values and their meanings

This information is necessary, if you store, for example, history data in the database,

since they use mostly IDs to refer to the components. Thus, these tables define which

variable has which ID, so that the data can be used also external to your application,

for example to make joined queries to the data tables.

4.2.2 Enabling tables

In order to take these metadata tables in use, you just need to enable them. You can

also define the table structure in the field objects.

Figure 27. Enabling VariablesTable.

Prosys Sentrol 4 Tutorial

 23

The tables have a special property, SemanticName, which defines the table

semantics(!): the TableName and FieldName of IDField will be derived from that,

unless you change them to something else.

4.2.3 Creating Tables

The storage will create all enabled tables automatically when it first connects to the

database at runtime, unless the tables already exist. You can also call CreateTable in

the storage or in any table object directly, to create the table. The table must have a

valid field definition (including specific DataTypes) in order to make table creation

succeed.

The components in the following examples also define table properties. To create

these tables, call:

 PsHistorian1.HistoryTable.CreateTable;

 PsStorageConnector1.Table.CreateTable;

The table will be created according to the definitions in the Table.Fields. Fields that

have IsKeyField set, will also be included in the tables primary key.

If you wish to have more control over the table structure, it is better to use the

database provider’s tools for creating the tables for you. Then you just need to map

the fields correctly to the storage component definitions using the FieldName

properties.

4.2.4 Dropping Tables

To remove the tables from the database, you can use DropTable, which is also

available in the storage and in the tables.

4.2.5 Adding data to the storage tables

You can add variables and data modules to the storage by calling manually

Storage.VariablesTable.SaveComponent or

Storage.ModulesTable.SaveComponent with your components. Or you can let the

PsHistorian and PsStorageConnector components to do this automatically (which

they will do, when you add variables to them).

Stage 4.3 Link Variables to Any Table

Drop a PsStorageConnector on the form. Set the Storage property to Storage1. Set

Table.TableName to TEST. Open the Links Editor and define a link between

PsFloat1 and field ‘F’ – as well as PsBool1 and ‘B’.

Also define a couple of additional fields: ID and ReportTime. Just add them to Links,

but without any variable connections. Set IsKeyField on for ID. See Figure 28.

Prosys Sentrol 4 Tutorial

 24

Figure 28. Defining links between variables and database fields. DataType must

be defined if the variable datatype does not match with the field type (i.e. in

Interbase we use Integer fields for Boolean data).

As discussed earlier, you can use the CreateTable method to create the table into the

database. Or define it yourself: For example, create a table corresponding to the

following SQL definition in the IBLOCAL database using Database Explorer:

CREATE TABLE TEST (

 ID INTEGER NOT NULL,

 REPORTTIME TIMESTAMP,

 F FLOAT,

 B INTEGER,

 PRIMARY KEY(ID)

) 10

The connector can be used for saving variable data into the table as well as loading

data from the table to variables. It will not be very useful to use the same component

for both directions, though. Normally, you will copy data manually, using Load or

Save. If you wish to save data into the table automatically, define TriggerMode either

to tmDelayed or tmImmediate. If you are not sure, use tmDelayed, which can wait

for all changes occurring at the same time in all variables, before it will function. We

will keep to the manual savings here – and leave the trigger to tmManual.

For saving, you have two alternatives: either to insert new records or update

existing ones. Use SaveType property for this. Now, leave it as stInsert.

To trigger the saving, we use a Button: drop it on the form and define its OnClick-

event as follows (here we have added a TEdit component (IDText) to supply the ID

values) :

 PsStorageConnector1.SetSaveParamByName('ID',

StrToInt(IDEdit.Text));

 PsStorageConnector1.SetSaveParamByName('ReportTime', UTCNow);

 PsStorageConnector1.Save;

That will provide the values for the Links that are not connected to any variables

(usually the key fields) – and saves the new record to the table.

10

 If you decide to use a different database than Interbase/Firebird, you will need to modify the table

definition accordingly. Since Sentrol 3.2, you can also create the table from your application, see

above, Stage 4.2.3.

Prosys Sentrol 4 Tutorial

 25

4.3.1 Loading values back

To load values from the database back to the variables (or to set the limits and

setpoint according to a recipe, for example) goes in a similar way using the Load

method. You will have to define how the record is selected with the key field values,

using SetLoadParamByName first, for example:

 PsStorageConnector1.SetLoadParamByName('ID',

StrToInt(IDEdit.Text));

 PsStorageConnector1.Load;

Stage 4.4 History Table

The Historian works as a “narrow” historian, where it records changes in variable

properties that it is set to “watch”.

Now you can drop a PsHistorian on the form. Set Storage again to Storage1 and

TableName to the table you just created. Finally, define Links for all the variable

properties that you wish to record in the table. In this tutorial, you will just need to

add two links: one for PsBool1 and one for PsFloat1. See Figure 29.

Figure 29. Defining history data to be recorded by the PsHistorian.

To create the table in the database, run Historian.HistoryTable.CreateTable in your

application (set Storage.DatabaseProduct first) – or create the respective table using

your database tools.

The default table is defined according to the following Interbase/Firebird definition:

CREATE TABLE HISTORY (

 VARIABLEID INTEGER NOT NULL,

 VARPROP INTEGER NOT NULL,

 CHANGETIME TIMESTAMP NOT NULL,

 NEWVALUE FLOAT,

 PRIMARY KEY(VARIABLEID, VARPROP, CHANGETIME)

)11

You can customize this, using the HistoryTable property in the historian. For

example, if you wish to also include a reference to the data modules (stored in

Storage.ModulesTable), just enable ModuleIDField.

11

 Note: the order of the fields in the primary key has some effect on the order in which data is in the

table. This order is fastest, if you will be fetching individual variable histories, but it will not show the

changes in a time line, if you want to see all variables at the same time, as is the case with the sample

application (see Figure 30). Unless by using SQL statements with “ORDER BY”.

Prosys Sentrol 4 Tutorial

 26

Compile and run the application and you should see new records appear in the

HISTORY table as the Variable changes. Click the button and you should get a new

record into the TEST table.

Stage 4.5 Sample

The sample application enables you to create the tables into ‘IBLOCAL’ and

experiment with the storage connector and historian. Clicking the Report button will

add a new row into the ‘TEST’ report table – and refresh the datasets. Use the ID field

to determine the ID of the report.

Prosys Sentrol 4 Tutorial

 27

4.5.1 Use PsStorageDataset for data aware components

Note that the sample uses a generic TPsStorageDataset12 component for displaying

the table data in the data aware. PsStorageDataset fetches the data from the storage

component, so if you switch to a different DB driver, you only need to change the

Storage!

Figure 30. Storage sample.

Note that there is also a generic database browser available in the tutorial. The

browser form is a standard part of Sentrol installation. Look for TPsStorageBrowser

in PsStorageBrowserForms.pas – and add it to your application as a generic DB

browser!

12

 The storage dataset and storage browser (which uses the dataset) are not available in

Delphi/C++Builder 5. The dataset is based on TClientDataset which uses the MIDAS library. You

must include unit ‘midaslib’ in the uses clause of your project source or distribute the midas.dll

(included in Delphi installation) along with your application to be able to use it.

Prosys Sentrol 4 Tutorial

 28

Lesson 5. Byte Arrays

Byte arrays are used to handle raw device (or PC) memory data.

Sentrol has a specific variable type for using byte arrays, TPsByteArray, and also a

specific connector for mapping the byte arrays to other variable types,

TPsByteArrayConnector.

Stage 5.1 Usage of Byte Array

You can use TPsByteArray to work with device data, for example, in connection with

third party or your own device drivers – or when accessing raw data from OPC

servers. It can handle byte and bit endianness and respectively provides methods to

get and set data in the memory area to and from native data types.

Figure 31. Properties of a Byte Array.

You just need to set the length of the byte array – and optionally change endianness

from the Intel default values, if you are accessing data from a field device. Field

devices typically use BitOrder&ByteOrder=enBigEndian, but you should refer to

the documentation for the device to ensure that you have the correct settings (which

you can, of course find out by just trying out). The ByteOrder will affect when

mapping the data to native data types larger than one byte, e.g. Word, Integer, Float

etc.

You can write data to the byte array simply using for example, TPsByteArray.Bytes:

procedure TForm1.SetRandomBytesBtnClick(Sender: TObject);

var

 I: Integer;

begin

 PsByteArray1.BeginUpdate;

 try

 for I := 0 to PsByteArray1.Length-1 do

 PsByteArray1.Bytes[I] := Random(256);

 finally

 PsByteArray1.EndUpdate;

 end;

end;

(Use BeginUpdate/EndUpdate to postpone the change notification to the end of all

your changes)

Prosys Sentrol 4 Tutorial

 29

Other applicable properties are TPsByteArray.Values (takes in a variant array) and

TPsByteArray.Lock, which provides direct access to the internal memory using a

PsByteArray pointer (just remember to Unlock it after you’ve done with it), e.g.

procedure TForm1.SetRandomLockBtnClick(Sender: TObject);

var

 I: Integer;

 P: PByteArray;

begin

 P := PsByteArray1.Lock;

 try

 for I := 0 to PsByteArray1.Length-1 do

 P[I] := Random(256);

 finally

 PsByteArray1.Unlock;

 end;

end;

Now, you can take data out of the ByteArray simply using GetAsDataType, e.g.

procedure TForm1.CopyToIntegerBtnClick(Sender: TObject);

var

 I: Integer;

 B: Boolean;

begin

 I := PsByteArray1.GetAsDataType(dtInt16, {Signed:}True, {Byte:}0);

 PsInteger1.Value := I;

 B := PsByteArray1.GetAsDataType(dtBit, True, 2, {Bit:}0);

 PsBool1.Value := B;

end;

Here, we have mapped the first two bytes of the data to PsInteger1 and the first bit

of the third byte (Byte number #2) to PsBool1.

SetAsDataType, obviously, can be used to set values to the ByteArray, respectively.

Figure 32. Sample application that uses a Byte Array variable.

Stage 5.2 Usage of ByteArrayConnector

Use TPsByteArrayConnector to build automatic parsing logic between native data

type variables and byte array variables, instead of doing it all manually as in the

previous sample.

Prosys Sentrol 4 Tutorial

 30

Figure 33. Properties of TPsByteArrayConnector.

You must first connect the component to a TPsByteArray as in Figure 33. Next, open

the Links Editor to define the mapping between the byte array and the variables. To

perform the same mapping as in the previous section, the links should look like in

Figure 34.

Figure 34. Linking ByteArray to other Sentrol variables.

Now, whenever the byte array data is changed, the change is reflected to the variables.

The sample application uses TPsByteArrayConnector.Active to define when the

connector is in use.

Figure 35. Sample application with ByteArrayConnector activated.

Prosys Sentrol 4 Tutorial

 31

Lesson 6. Functions

The function components enable easy online analysis with Sentrol variables. You

have a selection of predefined functions, and you have a couple of generic function

components: TPsFunction and TPsParserFunction.

Stage 6.1 TPsFunction

 TPsFunction is a generic component, which enables you to write your own function

definition between any number of input variables and an output variable.

Figure 36. Properties of TPsFunction and Inputs.

Define the Variable and VarProp for Output and use the Inputs Editor to add

the input links to the component. If you provide symbols for the links, you can refer to

them using TPsFunctionInputs.Values (see the OnCalc example below).

TriggerMode specifies when the function calculation is triggered: tmDelayed is

suitable for most cases; it “waits” until all the inputs have changed
13

 before the

function output is recalculated. Using tmManual you specify that the output is

calculated only when you say so, e.g.

procedure TForm1.CalcFunctionBtnClick(Sender: TObject);

begin

 PsFunction1.CopyToExternal(nil);

end;

TPsFunction requires that you define the algorithm in the OnCalc event handler, for

example:

procedure TForm1.PsFunction1Calc(Sender: TPsCustomFunction;

 Inputs: TPsFunctionInputList; var OutputValue: Variant;

 var OutputQuality: TPsVarQuality);

begin

 OutputQuality := Inputs.WorstQuality;

13

 Actually, it dispatches a Windows message to itself, whenever an input changes. The calculation is

triggered when the message is dispatched to the function. Effectively, it waits that all inputs that are

going to change in reaction to a single operation, e.g. OPC Data Change, have changed before

triggering the calculation.

Prosys Sentrol 4 Tutorial

 32

 if OutputQuality <> vpqbad then

 OutputValue := Inputs.Values['x'] - Inputs.Values['y'];

end;

As you can see, it is important to check the quality of the inputs first and only

calculate the result when appropriate!

Stage 6.2 TPsParserFunction

The Parser Function simplifies your job a little bit. It takes the free TParser
14

component in good use, and let’s you define the Expression to calculate with the

inputs already in the Object Inspector.

Figure 37. Parser Function let's you define the Expression in the Object

Inspector.

Now, you don’t need to use OnCalc, unless you need to further customize the result.

Stage 6.3 TPsSumFunction

Sum is one of the pre-built function components available in Sentrol. It simply

overrides TPsCustomFunction.CalcOutput as follows:

procedure TPsSumFunction.CalcOutput(var Value: Variant;var Quality:

TPsVarQuality);

var

 sum: Double;

 i: Integer;

begin

 Quality := vpqBad;

 sum := -1.0;

 for i := 0 to Inputs.Count-1 do

 if Inputs[i].Quality <> vpqBad then

 begin

 if (Quality = vpqBad) then

 begin

14

 TParser is a free component, which is currently available from DATALOG’s Delphi resources,

http://www.datalog.ro/delphi/delphires.html, and included in Sentrol Tools directory.

Prosys Sentrol 4 Tutorial

 33

 sum := Inputs[i].Value;

 Quality := Inputs[i].Quality;

 end

 else

 begin

 sum := sum + Inputs[i].Value;

 Quality := WorseQuality(Quality, Inputs[i].Quality);

 end;

 end;

 if Quality <> vpqBad then

 Value := sum;

end;

This way you can define your own function components, no matter how complicated

they are…

Stage 6.4 The sample application

The sample application let’s you select which f the functions is active – and try it out

yourself.

Figure 38. Function sample.

Figure 39. Sample in action.

Prosys Sentrol 4 Tutorial

 34

Lesson 7. Animators

Sentrol Animators are used to create different animation effects according to variable

values. There are different animators for different effects: position, size, color and

visibility.

They all share the same principle: you connect the animator to a Sentrol Variable and

to any GUI Control. The animator then modifies the properties of the Control

according to the current value of the Variable as you have parameterized.

Figure 40. Connecting the animator to a GUI Control (PsPanel1). It is already

connected to a Variable (PsFloat1). It will now modify the Control according to

the current value of the Variable.

Prosys Sentrol 4 Tutorial

 35

Stage 7.1 Color Animation

Coloring effects can be added easily with TPsColorAnim. You can define whether you

want to affect the Background, Font or some other color property with Mode. If you

select camCustom, you must define the coloring action in OnSetColor.

Figure 41. Selecting the Coloring Mode.

Use Colors to define the coloring range. Just add a number of entries to the collection

and select the respective colors. Each color will be used as long as the variable value

stays below the defined limit. In case the value is bad, the DefaultColor of the

animator will be used. The last color in the range is applied to values above the limit

as well.

Figure 42. Defining the coloring range.

7.1.1 OnGetColor & Kind

In addition or instead of using the Colors, you can provide customized coloring rules

with the OnGetColor event.

You can use TPsColorAnim.Kind to modify the effects a little bit: cakAlarm

predefines the color range to suite for alarming purposes (and sets VarProp to

vpAlarmState); cakGradient makes the coloring to find the color by interpolating

Prosys Sentrol 4 Tutorial

 36

between the defined colors in the range, instead of changing in steps; cakCustom

omits the Colors and only uses OnGetColor.

Figure 43. Kind specifies alternate behaviour.

Stage 7.2 Position & Size Animations

TPsPosAnim & TPsSizeAnim function quite similarly. They modify the position and

size of the Control according to the rules. The default rule is a linear mapping

between the variable range (VarMax & VarMin) and the position or size range of the

Control (PosMax, PosMin / SizeMax, SizeMin).

Figure 44. Position animator defined to move the circle Shape inside a panel –

and size animator to resize the display panel.

Orientation and Inverse affect the direction of animation. AlignParent and

AutoRange help to copy the ranges from the parent of the Control and the Variable,

respectively.

Prosys Sentrol 4 Tutorial

 37

Stage 7.3 The animation sample in action

The sample includes a color, position and size animator. You can see how they work

in

Prosys Sentrol 4 Tutorial

 38

Lesson 8. OPC Server

Sentrol includes OPC Data Access Server implementation in TPsOPCProvider. This

is not a component, but an object that must be created in application initialization

phase.

Stage 8.1 Adding OPC Server to your application

You will just need to create the OPC provider in your unit initialization as

follows
15

:

uses PsOPCProvider;

…

var

 MyOPCProvider: TPsOPCProvider;

initialization

 MyOPCProvider := TPsOPCProvider.Create;

 with MyOPCProvider do

 begin

AutoRun := True; // Default = True

CLSID := '{CBC804CA-623B-4D2B-9E60-B54A55398EF5}';

 ServerName := 'My.OPC'; // ProgID

Description := 'My OPC Server';

Vendor := 'Me';

VendorInfo := 'My Test Server';

AddressSpace.IncludeProps := True; // Default=False

Initialize;

 end;

finalization

 MyOPCProvider.Free; // Notifies Shutdown

You must provide the object the CLSID (use Shift-Ctrl-G to generate a new GUID in

Delphi editor) and ServerName (the ProgID) – and call Initialize. That will

register the component and make it available to COM Clients.

Also, remember to free the object at finalization: it will call the clients with

IOPCShutdown callback.

You can now run the application and connect to it using an OPC Client.

Note: if you only wish to register the server and let it start automatically when the

client connects to it, run it with the option ‘/regserver’, e.g. ‘Project1 /regserver’. To

uninstall it, use ‘/unregserver’.
16

15

 In C++, you don’t have any initialization section, so you must just create the OPCProvider before the

application is run. See the C++ version of the sample code included in the installation package.

16
 In Windows Vista, you must register the server with administrator rights. For example, run it once

"as Administrator" from the Windows Explorer.

Prosys Sentrol 4 Tutorial

 39

Figure 45. Address Space of the sample OPC Provider.

Figure 46. Connected to My OPC Server (with Prosys OPC Client).

Stage 8.2 Customization

In principle, the OPC provider will just publish all variables in the project as shown in

Figure 45.

Prosys Sentrol 4 Tutorial

 40

The Item Access Rights are set automatically depending on the selected VarProp, but

they can also be overridden using TPsOPCProvider.OnItemAccessRights. You will

need to create the event handler manually and connect it to MyOPCProvider, for

example in FormCreate:

procedure TForm1.FormCreate(Sender: TObject);

begin

 MyOPCProvider.OnItemAccessRights := MyOPCProviderItemAccessRights;

end;

procedure TForm1.MyOPCProviderItemAccessRights(Sender: TObject;

Variable:

 TPsVar; VarProp: TPsVarPropType; var AccessRights:

TPsOPCAccessRights);

begin

 if VarProp = vpValue then

 AccessRights := arReadOnly;

 // else use the default logic

end;

Alternatively, to guarantee that the clients cannot modify anything, you could just set:
MyOPCProvider.ReadOnly := True;

The server will be enabled immediately after startup for client connections. If you

want to prepare your data first, you can set AutoRun to False and call Run yourself,

when the time is appropriate. AutoRun tries to wait until all forms have been created,

but it may not satisfy your needs. If the clients are allowed to connect to the server too

early, the server address space may not contain everything, yet.

Note: After Sentrol 3.1, the address space should react dynamically to changes in the

data modules. Even new data modules added to Application should be automatically

added to the address space, if variable components are inserted in them. This

functionality is controlled by the properties AutoAddApplication and AutoUpdate in

the AddressSpace.

AddressSpace.IncludeProps is used to define whether the variable properties are

shown in the address space. By default it is False, and the address space only

includes the variables (no vpValue, etc. under that). The individual properties can

always be accessed, though, as OPC item properties or just by adding the respective

extensions to the variable IDs, e.g. Form1.PsFloat1.vpValue.

There are also a few other properties in TPsOPCProvider that affect how the server

works. Check the respective documentation to learn about them.

8.2.1 Hierarchical address space

The OPCProvider will find all data modules and forms that are owned by Application

– and create the address space according to that. But, it will also locate data modules

and forms owned by those modules and forms also, so you can use the ownership

hierarchy to initialize a deeper hierarchy, too. For example, if you initialize a

SubModule under Form1 like this:

Application.CreateForm(TForm1, Form1);

SubModule := TSubModule.Create(Form1);

You will get an address space as in Figure 47.

Prosys Sentrol 4 Tutorial

 41

Figure 47. Hierarchical address space.

8.2.2 Fully customized address space

TPsOPCProvider.AddressSpace can be used to customize the address space contents

even more. In order to create a customized hierarchy without the relation to

Application object, you must first disable the default behavior:

 MyOPCProvider.AddressSpace.AutoAddApplication := False;

 MyOPCProvider.AddressSpace.AutoUpdate := False;

You can then add your modules and variables using the calls to

 RootIndex := MyOPCProvider.AddressSpace.AddModule(Self, -1,

'MyDevice');

 MyOPCProvider.AddressSpace.AddVariable(RootIndex, PsFloat1,

'Temperature');

You can also create new components or variables on the fly and add them to the

address space:

 Pressure := TPsInteger.Create(nil);

 MyOPCProvider.AddressSpace.AddVariable(RootIndex, Pressure,

'Pressure');

You can also customize the item id separator:

 MyOPCProvider.AddressSpace.PathSeparator := '/';

Prosys Sentrol 4 Tutorial

 42

Figure 48. Fully customized address space in flat mode.

8.2.3 Simulation Server

You should also take a look at the Prosys OPC Simulation server, provided at

http://www.prosys.fi/downloads.html. The full source code is included and all the

material required for installing the servers. The simulation server demonstrates the

use of TPsOPCProviderForm, which can be used to display client connections to your

server.

Prosys Sentrol 4 Tutorial

 43

Lesson 9. Creating components at run-time

Most of the lessons here have shown you how to create a project by defining the

components at design time. Although this is very convenient, especially for small

projects, it may become necessary quite soon to learn to configure your project

dynamically at run-time.

Stage 9.1 Adding Links to Connectors

In principle, you can just create the same components and configure their properties

the same way that you do at design time. One note is necessary, though: The Links

property in the different connectors (as well as some other list type properties, such as

TPsState.States) require that you cast the items to correct type. For example, if you

add a new link to TPsOPCConnector, you need to cast the result to TPsOPCVarLink, in

order to get access to all the properties

var

 Connector: TPsOPCConnector;

 Variable: TPsVar;

 Link: TPsOPCVarLink;

begin

 //…

 // TPsVarLinkList.Add is defined to return a generic TPsVarLink

 Link := Connector.Links.Add as TPsOPCVarLink;

 Link.ItemID := ’YourItemID’;

 //…

end;

Stage 9.2 “Helper” objects

There are of course some objects that you can only access from the code at run-time.

Take a look at the unit PsClasses, for example: you will find components such as

TPsStringList, TPsStringTable, TPsStringTree, which are all used in the Sentrol

internals, but you can also benefit from them yourself.

While working with Variables, you should consider using TPsVarList whenever you

need to keep lists of your variables. If you Attach it to a Component (e.g. Data

Module or Form), it will always automatically contain the variables owned by that

component. Useful, isn’t it!

Please, consult the Sentrol Help for more about these objects.

Stage 9.3 Sample project

The sample project related to this lesson shows you how to create a number of OPC

Connectors and Variables at runtime and how to link them. It also demonstrates the

usage of standard string lists and TPsVarList to keep and show the components in

GUI controls (using Assign methods).

Also note that the Connector.Links can be assigned to string lists and vice versa (if

all the referred components just exist). And you can save and load them to files with

Links.SaveToFile & LoadFromFile (or …Stream), respectively.

Prosys Sentrol 4 Tutorial

 44

Figure 49. The run-time sample project (screen shot from the C++ version).

