PROSYS =

Prosys Sentrol 4 Tutorial

Hello world!

This Tutorial shows you the very basics of Prosys Sentrol and also guides you to your
first Sentrol applications.

Help Files & PDF

You might consider looking at additional documentation in the Sentrol Help' while
you read these lessons. Start by looking at the ‘Sentrol Framework’ section, which
talks about the main ideas and concepts behind the design and usage of the component
set. Also note that this file is available as PDF from hitp://www.prosys.fi/downloads.html

About the Samples

The sample projects created in this tutorial are installed along with the product. You
will find them under <installation directory>\Tutorials. Although
this document only contains listings in Delphi language, you will also find the
respective C++ examples from the installed projects (except for a couple of units).

Note that there a couple of additional samples also in <installation
directory>\Samples.

Compiler versions

There are specific projects for different compilers in the Tutorial project directories.
Look for the following project files, depending on your compiler:

Compiler Project File

Delphi 5 Project1D50.dpr or Projectl.dpr
C++Builder 5 Project1C50.bpr

Delphi 6 & 7 Project1.dpr

C++Builder 6 Projectl.bpr

Delphi 2006 Project1.bdsproj

C++Builder 2006 Project1C.bdsproj

Delphi 2007 Project].dproj

C++Builder 2007 Project1C.cbproj

Vista Notes

Prosys Sentrol 4 should install fine in Windows Vista, if you just make sure that you
get to install it in administrator mode.

The tutorial and sample projects are also installed under the Prosys Sentrol installation
directory, which is located in “C:\Program Files\” (or similar). In Vista, normal users
are not allowed to write in these directories. So before you try to compile your tutorial
and sample applications, you must edit the security settings, so that you are enabled to
write in these directories.

"You can find it from the Delphi Help (Contents) after installation.

Prosys Sentrol 4 Tutorial

Table of Contents

Lesson 1.
Stage 1.1
Stage 1.2
Stage 1.3
Stage 1.4
Stage 1.5
Stage 1.6

Lesson 2.
Stage 2.1
Stage 2.2
Stage 2.3
Stage 2.4
Stage 2.5
Stage 2.6
Stage 2.7
Stage 2.8

Lesson 3.
Stage 3.1
Stage 3.2

Lesson 4.
Stage 4.1
Stage 4.2
Stage 4.3
Stage 4.4
Stage 4.5

Lesson 5.
Stage 5.1
Stage 5.2

Lesson 6.
Stage 6.1
Stage 6.2
Stage 6.3
Stage 6.4

Lesson 7.
Stage 7.1
Stage 7.2
Stage 7.3

Lesson 8.
Stage 8.1
Stage 8.2

Lesson 9.
Stage 9.1
Stage 9.2
Stage 9.3

PROSYS =

Introduction to Basics 3

Variables 3

GUI Controls 4

Linking Sentrol components 5

Buttons 6

Extra: Composite Controls 7

OnChange and OnValueChange Events 8

OPC Client connection 9

OPC Components 9

Connecting to the OPC server 9
Defining the OPC Connector 11
Linking Variables to OPC Items 12
CSV Files 13

Copy & Paste to Excel 13

Create New Variables for OPC Items 13
Dynamic configurations 14

Trends 16
PsHistoryArray: Online Trend Buffer 16
PsChart: Multipurpose Variable Charting 17

Persistent Storage 21

Define a Storage 21

Object Persistence in Storage Tables 21
Link Variables to Any Table 23
History Table 25

Sample 26

Byte Arrays 28
Usage of Byte Array 28
Usage of ByteArrayConnector 29

Functions 31
TPsFunction 31
TPsParserFunction 32
TPsSumFunction 32

The sample application 33

Animators 34

Color Animation 35

Position & Size Animations 36
The animation sample in action 37

OPC Server 38
Adding OPC Server to your application 38
Customization 39

Creating components at run-time 43
Adding Links to Connectors 43
“Helper” objects 43

Sample project 43

Prosys Sentrol 4 Tutorial PROSYS <'.’-j,4

Lesson 1. Introduction to Basics

The objective of this lesson is to create a simple application that presents the
information flow between Sentrol components.

Stage 1.1 Variables

Begin a New Application from the File Menu. You will see a single form (Form1),
which you can use to draw the visible and non-visible components from the Delphi
palette. If you are not familiar with the Delphi environment, yet, you should take
some time to learn the basics with it first.

The Sentrol components are located on several pages in the Delphi component palette:

Sentrol Vars Variable and function components
Sentrol Controls GUI Controls for visual display
Sentrol Anims Simple animation effects

Sentrol Functions On-line function components
Sentrol OPC OPC Client connections

Sentrol Storage Database connections

As you can see from the Sentrol Framework description in the Help file, all Sentrol
activities are based on Variable data. You will define the process data using variable
components. After that you can specify how that data is used: where it comes from
(the OPC components), what is done with it (Vars, Functions) how it is displayed (the
Controls, Anims) and how it is stored (the Storage).

PsVariant PsBool PsFloat Psinteger PsState PsBitset PsString PsDateTime

S Stn:-raue] Sentral Ani] Sentral Funn::ti-:nns]

3 :ﬁn EFRp %nc -;9-& ﬁ ﬁ'?ul %&1 %

PsFloatArray PsHistoryA{yPsBytlArrayP&yteArrayConnector

Figure 1. Sentrol components are on several palettes — the Variables are the main
components.

Once you have located the ‘Sentrol Vars’, select a PsF1loat from it and drop it on the
form. psFloat is the variable type that you will use most often. It is suited for
standard analog signals and other floating point data. Check also the PsBoo1, which
you can best use with binary signals. You may also take a look at the other variable
types, but we will do with a single float for this first application.

Once you have the component on the form, you can set its design time properties with
the Object Inspector.

Prosys Sentrol 4 Tutorial PROSYS <':.J4

Object Inspector %
| PsFloatt =
Froperties] Ewverts]

Active True
AlarmHelp
AlarmHigh 150
Alarmlow 50
Alarmtode | amAlarms
Caption PsFloatl
DizplayFormat | 0. ###
EngUnit bar
D 1
M arne PsFloat
Rangetd ax 200
Fangetdin 0
Fangetdode | rmMone
FieadOnly Falze
Setpaint 0
Statstode smtone
Tag 0
WarnHigh 0
wamLow 0

All shown

Figure 2. Properties of PsFloatl.

Set the value of RangeMax t0 200, AlarmHigh to 150 and AlarmLow to 50. The alarm
limits are used only in Lesson 3, but you should already set A1armMode as well. Also
you might like to limit the number of decimals shown on screen with bisplayFormat.
See Figure 3, for an example and refer to Sentrol help for the format”.

Remember that you can press F I/ anywhere in Delphi and it locates the Help
description for the component that you have currently selected.

Stage 1.2 GUI Controls

After having modeled the measurement data in Stage 1.2, you can go and design the
user interface!

Open Sentrol Controls from the Delphi component palette. Drop a PsLabel,
PsPanel and PsEdit component on the Form as in Figure 4.

PsLabel PsPanel PsEdit PsCheckBox PsRadioButton PsComboBox Psimage PsChart

Sentral Xars

[E h

PsButton PsBitBtn PsSpeedButton PsDisplayBox /PsEditPanel

PsDisplayPanel PsComboPanel PsEventView

PsDateTimePicker

Figure 3. The Sentrol Controls are for displaying and modifying Variable data.

? The database fields use the same format. See TNumericField.DisplayFormat, for an example.

Prosys Sentrol 4 Tutorial PROSYS <'.’-j,4

4 Form1 ==/
I N
N e I TR
" PsFloatl S A
Dl [HNULL Ll

Figure 4. PsLabel, PsPanel and PsEdit placed on Form1 with PsFloatl.’

The GUI Controls have all the same properties that the standard Delphi VCL controls
and in addition they know how to deal with Variable data.

Stage 1.3 Linking Sentrol components

All the GUI controls work the same way: they have a Variable and VarProp property,
which you use to define the Variable data that they show or manipulate.

Select the PsPanel1, which you dropped on Form1 and locate the property called
variable in the Object Inspector. Open the drop-down list and select PsF1oat1 from
the list (you should not be able to miss it!). Repeat this with Psedit1 and PsLabell.

Tag 1] Tag]
Top Top
[ariable PsFloatl] | " ariable PsFloatl
WarProp | WarProp wp¥alue hd
Wizible True "izible wpbdin =l
Width Width wplther
wpldther?
wpS etpoint
vpstdDey
palue
vt arnHigh
Al zhown All zhown wphad arniL o =

Figure 5. Setting the Variable and VarProp with the Object Inspector. All
Variables in the active form are shown on the selection list. Also components in
other forms and data modules will be shown, after the units are used in the form
(from the menu, use File->Use Unit).

Now, select the PsLabel1 and change its varProp from vpvalue to vpCaption. If
you want, you can go and change the caption of PsFloat1 to your choice.

You can also connect to other run-time properties of the Variable by changing the

varProp from the default of vpvalue. This way you can define generic fields in the
form, which can then be switched at run-time to display or modify any Variable — or
any VarProp. Note however, that not all VarProps are useful with all variable types.

3 “#NULL’ means that the components are not connected to any Variable

Prosys Sentrol 4 Tutorial

4 Form1 ==
LI PsFloat! ColIlIiIIiiIIIiIIiIIIiIIIIIII
- Par Peeavae |11
| PsFlaatl LIl
Ll |=PsFloatiDY alue] LIl

PROSYS =

Figure 6. The controls show where they are connected to at design time.

Now you are ready to compile the program. Values fed in PsEdit1 are seen in

PsPanell once you press <Enter>.

% Form1 ==/

PzFloatl
34

34

Figure 7. The first Sentrol application created in Lesson 1.

Stage 1.4 Buttons

To write values to the variables, you can use the edit box — or buttons. Buttons come
in different flavors, corresponding to different Win Controls: TPsButton, TPsBitBtn,
TPsSpeedButton. And there is also a TPsRadioButton, TPsCheckBox and
TPsComboBox! In fact they all behave a bit differently, see the available properties and

the help for details.

The idea in all the buttons is the same: You use a button to set a variable to a certain
value. So, first connect the button to the variable you want to set, the same way that
you did with the label, panel and edit box. And then, define the value to be set, in

ClickValue.

Prosys Sentrol 4 Tutorial PROSYS 6:._;,4

Object Inspector

4 Form1 S

L e

| PzButtond

Praperties | Events | oo Beflatl

SR S R R . . wl i
& Miscellaneous -] D %“5? oo =PsFloatifValue] - - - w PsButton I: S
E Sentrol - PsFloatr o

Ative True ZZZZZZZZZ|=F'3F|'3~3”W-3|UE] L
AutoEnable | True

Badvaluez | True
CaptionStyle | csCustom
Clickvalue |0l
DigplayFarms
ForceRefresh Falze
HintFormat
Hinttdode | hmMormal
HintFrop vpLaption
' ariable PzFloatl
YWarProp vp¥alue
Vizual >
All ghown

Figure 8. Defining ClickValue for a button. Note that if you arrange the Object
Inspector by Category, you can see the Sentrol properties grouped together!

Run the application — and use the button to reset the variable to 0!

Stage 1.5 Extra: Composite Controls

Drop a psDisplayBox, PsDisplayPanel, PsEditPanel —and possibly other
controls on the form, select a Variable and VarProp for each and see how they
behave!

Object Inzpectar

IF'sEdltF'aneH TPsEditPanel 'I aooooacaoa PsFloatl ©~ PeFloat]
Properties | Events L |
| I S ?ﬁ? - =PsFloati[¥alue] | - - - - Float1[val bar
[HMiscellaneous Y | i bee—ee———
SSentol .. PsFloatl - .. .
gnira i |=PSF|05”N5|U9] ‘¢ PsFloat] PsFloat1[Value bar [:
Active True L .
[H ApplyOptions [ao0nEnterkey ao L —PeFloati[¥a bar E
AutoRefresh| True .
Bad\:"aluels True . al' PshisplayPanell: TPsDisplayPanel:
Captiondligny tal eftustify PsEditPanell: TPsEditPanel;
CaptionForm. R
: private
Captiont argi & K X
Captioriwidt 80 i Private declarations |}
DisplayFormg Vi nublic : .
Englnitislign] taCenter Miew P buklic declarations }
E nglnitForm | Arrange L4 “T‘ by Category
EngUnlthdt 40 FRevert to inherited by Hame
FormatString
HintFormat Expand LEx: TFormlEx:
Hinttdode | hmMormal Lollapze
Hintl.:'.rop vpCaption Staw on Top entation
b odifiedSyml * .
E MadifiedS pml (TFont) Hide FI}
ShowEnglni Truz Help
Showt odifie| True Properties
' arniable PsFloatl
WarProp ypYalue Lockable
H¥isual] =
& shawn A

Figure 9. Object Inspector arranged by category helps to locate the special
properties of the Sentrol components. Since Delphi 2005, the properties are
arranged by category already by default.

Prosys Sentrol 4 Tutorial PROSYS 6:._;,4

¥ Form1Ex =
PzFloatl FzFloatl
34 a4 bar
34 PsFloat] T bar
PsFloatl 34 bar

Figure 10. The extended application with some composite controls on it!

Stage 1.6 OnChange and OnValueChange Events

The variables also have event handlers that you can use to catch changes when you
need to trigger actions in your own code. You can use TPsVar .OnChange to react to
changes in any VarProp, but if you are only interested in the Value changes, then you
will do better with TPsvar.onvalueChange.

For example:

procedure TFormlEx.PsFloatlChange(Sender: TPsVar; props:
TPsVarPropTypes) ;
begin
// whenever the Caption or Value changes, update the Forml.Caption
if (vpValue in props) or (vpCaption in props) then
Caption := Format ('FormlEx - %s=%s',
[Sender.Caption, Sender.ValueAsString]);
end;

So, in onchange handler you should filter the interesting events yourself, as it will be
called whenever any varprop changes — and the value, for example, may still be
unset.

And to catch changes that are about to occur, you can also use onChanging!

PROSYS =

Prosys Sentrol 4 Tutorial

Lesson 2. OPC Client connection

The objective of this lesson is to read data from an OPC-server using Sentrol OPC
components and the application created in Lesson 1.

Stage 2.1 OPC Components

Continue from Lesson 1. Locate a PsoPCServer and a PsOPCConnector from the
Sentrol OPC palette and drop them on the Form.

......... PSF'DEH&
S %‘E?ZZ =PsFloatilvalue] - - - poOPCServer 0l
" PsFloat! S 7%
Lol |=PsFlaatilyalue] i tepel
[
L PeNPCConnector]

Figure 11. OPC components in Form1.

The psopcserver is used to define a connection to any OPC Data Access server and
the PsoPCConnector is used to define how the OPC Items in the Server map to the
variables in the application.

Stage 2.2 Connecting to the OPC server

Select the PsoPCserver1 component on the form. Select the ServerName property in
the Object Inspector. If there are OPC Servers installed in your PC*, they will be seen
in the drop-down list (see Figure 12). Pick one. You can connect to the server already
at design time, by setting the Connected property to True.

Object Inspector ||
| Pz0OPCServerl j
Froperties l Events]
ategory oposciutomatic
Connected False
Credentials [TPzMetwork Credentialz]
Hoszt localhost
LCID 1]
Log [TPsOPCLog]
Mame PzOPCSerer
| ServerMame | Prosys.OPC.Simulation ~|
Statuzlnterval | 30000
Tag 1]
IzelCredentialz False
All zhovn

Figure 12. Select the OPC Server to connect to from the combo box — or just
enter the ProgID (or CLSID) for the server.

*If you don’t have any OPC Servers available, go and get a free simulation server from Prosys
<http://www.prosys.fi/downloads.html>

Prosys Sentrol 4 Tutorial PROSYS <’:._;,,4

You can also connect to remote OPC servers — just set the Host property before
setting the serverName. You must, however, be allowed to connect to the other host
by DCOM and you will also need to allow data transfer back from that host to your
local host. Check the OPC Foundation White Papers at
http://www.opcfoundation.org/Downloads.aspx?CM=1&CN=KEY &CI=282 for how to do this, if
you are not familiar with it.

Since Sentrol 4, you can also define additional user credentials for remote access. Set
UseCredentials=True and define the username and password to Credentials.

Object Inspector 3%
| PzOPCSererl j

Froperties l Events]

Cateqgary opczcAutomatic
Connected Falze
[l Credentials [TPzHetwork Credentials]

Diarnair
FPaszword | mypass
Izer john
Hozt RemoteHost
LCID 1]
Log [TPz0OPCLoqg]
M ame FzOPCServerl

ServeiMame | Prosys OPC.Simulation
Statuglnterval | 30000

Tag 1]
| UseCredentialz True =l
Al ghovn

Figure 13. Defining alternate user credentials for remote access.

10

Prosys Sentrol 4 Tutorial

Stage 2.3 Defining the OPC Connector

PROSYS %

Next, we will define the mapping between the OPC items in the server and the

variables in our application.

Select the PsoPCConnectorl component that you have on the form.

Object Inspector

X

| PzOPCConnectar]

Froperties l Events]

Acceptnvalidlt False

Active True

Azunc Falze
Azunctaite | Falze
AutodctivateR True
Badalues Falze
DataSource | opcdsCache
Deactivatelink| Falze
Deactivate0nE Falze

LCID 1024
Links [T Pz arLinkLizt]
M ame Pz0OPCConnectar]

PercentDeadb: 0
Readdnly Falze

[

Senver Pz0OPCServerl
ShowErmore | True
Tag]
TimeBias -1
lpdateRate | 1000
All hown

Figure 14. Properties of PSOPCConnector.

Use the Object Inspector to set Active, Async and Asyncirite to True

(asynchronous connections are preferred to synchronous, for efficiency, but you may
also choose to use synchronous data transfer). Finally, set Server to PsoPCServerl.

11

Prosys Sentrol 4 Tutorial PROSYS <’.’-j‘

Stage 2.4 Linking Variables to OPC Items

Next, you can define Links. Click the small button to the right of the property value
box (the one with three dots in it) and the OPC Links Editor opens (Figure 15).

Add, Delete, Load, Save, Edit OPC ItemID, Add OPC Items, Create Variables

Lol
s

|@|PS¢P€C0 B8]
Lirks
¢ | @d 4lmle IT.—‘:*I |

[n] ‘Yariable WarPrap AccessPath Active

|sduray ItemlD ScaleFactar | ScaleOffzet
0

Figure 15. Links Editor for PSOPCConnectorl. The editor is used to define how
OPC Items are linked to the Sentrol Variables.

Add a new link with the Add OPC Items -button. The OPC Address Space Browser
(see Figure 16) opens with a tree view that contains the address space of the
connected OPC Server. Select a branch from the left and an item from the right (in
this example we have used the Prosys Simulation OPC server). The OPC Item ID
should appear in the edit box at the top of the dialogue. Press OK to accept the
selection.

J» OPC Server Address Space: \\localhost\Prosys.OPC.Simulation =JolE
Item [D[=]: |Triangle.F‘3FIDat1 Triangle. Pzlnteger 0k
Branches temz
=1 Progpe. OPC. Simulation PzBool Cancel
+- Static £l Note: You can
Falnteger] .
+- Random PsCiate] - select multiple
+- SawTooth PRitSat] L= Load... items from the list
+- Sinuzaid PzString and add them all at
Triangle PsFloatimap I Save.. once!
+- ReadOnly ?;Bytle.ﬁ.rray}
imerlnterva -
DXFloat fe:: Refresh
Dilnteger
M ode
" Flat
{* Hierarchial
Ready.

Figure 16. Selecting the OPC Items from the OPC server address space.

Once you are back at the Links Editor, set variable for the selected link to
PsFloatl. You get a drop-down list when you click the variable cell in the grid.

Note! Unless you define the connector to be Readonly, it will both read and write
values to the OPC server automatically, whenever the other one changes (if the
variable values in your application are changed, they will be written to the OPC
Server).

12

Prosys Sentrol 4 Tutorial PROSYS <’:._;,‘

£ PsOPCConnector1 =Jo)E
Links

#|=| 2@l &|E|@ =we]

1D ariable WarProp AccessPath Active DataType |zArmray |temlD ScaleFactor | ScaleOffset

o - | vphalue WV wdtDouble [T TrianglePsFloatl 1]
1 vp‘v‘alue WV wdtinteger [~ Triangle.Pslrteger 1]
Form1.PsFloatl

Figure 17. Defining the Variable for the link.

Close the Links Editor. Run the application. If you got everything right, you should
see values updating on the panel as in Figure 18.

% Form1 =JoJEd

PzFloatl

47124

140,841

Figure 18. Application created in Lesson 2. You can change the value from the
edit, to make the connector write the value to the OPC server. You will notice
that the simulation in the server continues from the new value!

Stage 2.5 CSV Files

EI EI You can save and load the links from CSV files — and use other applications to
modify the configuration. Use the Load and Save buttons in the Editor toolbar.

The CSV format of the used files is as follows":

Variable;VarProp;AccessPath;Active;DataType; IsArray; ItemID; ScaleFactor;ScaleOffset
Forml.PsFloatl;vpValue;; True;vdtDouble;False; Triangle.PsFloatl;1;0
;vpValue; ; True;vdtInteger;False;Triangle.PsIntegerl;1;0

Note: When you load CSV files, make sure that the variables you refer to, already
exist in the project!

Stage 2.6 Copy & Paste to Excel

The best way to handle the data, with for example, Excel can be with the CSV files,
but you can also select separate lines to copy and paste between the editor and Excel.

% [Ba|

Stage 2.7 Create New Variables for OPC Items
il Did you notice the Create Variables button in the Editor Toolbar?!

It opens a dialog that lets you define which kind of variables you would like to create
for the OPC Items you just brought from the address space. By default it will try to
use the OPC Item DataTypes for selecting the appropriate variable type for each item.
The Advanced Options define how the components will appear on the form or data
module and how they are named.

> The CSV separator is defined in Windows Regional Settings; in this example it is ;.

13

Prosys Sentrol 4 Tutorial

B Create New Variables

S]]

Lapout

Start at 2
Grid Width

[w “Wrap at
[“Wrap at

Wariable Type:
|kamnmmm> E:J
Advanced:

Scope Cptions

o Al links [v Empty links only

[v Llze exizting wariables

" Selected links W Usze Full ltem Path

32 L 32
96 . Height |58
the right edge

the bottom edge

\/']
x Cancel

Figure 19. Create Variables Dialog.

PROSYS ‘=

The new variables appear on the form — and are linked to the OPC Items!

PsOPCConnector1 ==&
Links

¢|=| S[E| sEie| =lEo

|} Wariable WarProp AccessPath Active DataT ype | simay ItemlD ScaleFactor | Scalelffzet

0 Farmi.PsFloat vpvalue ¥ vdtDouble I Triangle. PsFloat1 1 i}

1 Forml. Triangle_Pslntegerl wpialue v votlnteger [Triangle.Pelntegerl 1]

2 Forml.SawTooth_PsBooll wpialue v vdtBoolean [SawT ooth.PzBoall 1]

3 Forml.5awT ooth_PsFloat wpialue v vdtDouble I SawT ooth.PzFloatl 1 a

4 Forml.SawTooth_Psinteger]l wpYalue v votlnteger [SawT ooth.Psinteger] 1 i

Figure 20. The newly created variables are linked to the respective OPC Items.

Stage 2.8 Dynamic configurations

If you have noted that all the configurations are done at design-time, and wonder if
the same could be done more dynamically at run-time only, please consult Lesson 9.

Stage 2.9 COM Threading Models

Because OPC is based on Microsoft COM technology, your application is actually a
COM client application. You should therefore also be aware of the different
threading models supported by COM.

The default threading model is the single threaded, but for OPC communication the
recommended setting is the multi-threaded (also called “free threaded”) model. It
ensures that data callbacks from the OPC server get through to your application
without delays in all situations.

Fortunately, defining the threading model is easy in Delphi; you can simply set the

value of CoInitFlags at your project source, for example as follows:

program Pro

uses
ActiveX,
ComOb7j,

jectl;

// defines COINIT_* constants
// defines the ColInitFlags variable

14

Prosys Sentrol 4 Tutorial PROSYS 6.'._;,4

Forms,
Unitl in 'Unitl.pas' {Forml};

{$R *.RES}

begin
// Define the COM threading model
CoInitFlags := COINIT_MULTITHREADED;

Application.Initialize;
Application.CreateForm(TForml, Forml);
Application.Run;

end.

See the Help for more information on ColnitFlags.®

® In C++ Builder, Help is available under "multi-thread apartment threading model", and the necessary
include files are “objbase.h” and “activex.hpp”.

15

Prosys Sentrol 4 Tutorial PROSYS <’:._;,‘

Lesson 3. Trends
The objective of this lesson is to draw a trend of a variable. Again we will continue
with the application created in Lessons 1 and 2.

The trends are handled in two ways: PsHistoryArray (Sentrol Vars) is used to keep a
finite length of Variable history for display and analysis (e.g. sliding average). On the
other hand, psHistorian (Sentrol Storage) is used to define a persistent, long-term
storage of variable values. A third component, the pschart (Sentrol Controls), is used
to display history data on screen’.

Stage 3.1 PsHistoryArray: Online Trend Buffer

We will continue with the project from Lesson2. First, enlarge the form a little to
make room for the chart. Then drop a PsHistoryArray (Sentrol Vars) and a PsChart
(Sentrol Controls) on the form.

A Form1 =

. ™ | PsFloatl oL T e
..Z%ﬁ?ii ::::ﬁ:::::::ﬁ:::::::::
" PsFloat - =PeFloatilValue] | pepistominanl © PsOPCServer & 00 0

Figure 21. PsHistoryArray and PsChart added on form. The chart does not
display anything until a variable is linked to it. The edit boxes for limits are used
to modify the alarm limits at run-time.

Connect PsFloat1 to PsHistoryArrayl by setting the variable property with the
Object Inspector.

Also set Circular to True and Capacity to 60, which sets the array length to a
minute (equals to Capacity * SampleWidth [in milliseconds]).

The Range and Alarm limits are copied from the variable, when varrRange and
varSpecs are set. You must, however, define A1armMode by yourself.

7 Actually, you can also use PsChart to display any variable values, although only PsFloat and
PsFloatArray are currently meaningful in addition to PsHistoryArray.

16

Prosys Sentrol 4 Tutorial PROSYS <'.’-j,4

Object Inspector |

| PzHiztomdray] j
Properties } Events]
Achive True
Agaregate agh aw Conied fi
AlarmHelp ORIG r(?m
AlamHigh | 150 < Variable (if
AlamLow |50 - VarSpecs is True)

Alarmbid ode amAlarms
dravSpecs | True <+

: set these
Capacity 60 <= 7
Caption PsFIuat"I/'

Circular True
Deadband 1]
DizplayF ormat
E nglirit
Firstindex 0
1D [
M ame FPsHiztarwdrap]
Rangetin 1] < . .
RangeMods [rmMone Variable (lf
ReadOrily False VarRange 1S True)
Samplinglntery. 1000
Samplingtode | smChange
Setpoint 0
Statziode zmione
Tag 0
WarCaption True
YarEngUnit | True
[FH ' ariable PsFloatl <= set this
WarProp vp¥alue
WarR ange True
WarSpecs True
WarnHigh 0
Wiarnlow 0
All zhoven

Figure 22. Setting PsHistoryArray to keep an online trend of PsFloat1 for the
last minute.

Stage 3.2 PsChart: Multipurpose Variable Charting

Next select the chart, which is already on the form. First you must add one series on
the chart:

17

Prosys Sentrol 4 Tutorial

Object Inspector |)
| PsChart1.Series(0] j aE e
Properties l Events]
Active True 0 - Serieszl
AlarmCalar M clFed
Barvidth 0
Caption Serniesl
Color M ciBlue
Fillstyle [IbsClear
LimitLine [TPen]
LineStyle F— psS5olid
Ling'idth 2
Mode smLine
M ame Series0
Symbiol #0
SymbolFont | [TFont)

WarCaption False

| Y ariable =

Object Inspector 1
| PsChartl |
Froperties l Events]
Align alBottom
ChartCaolor | chwihite
Color [lclRtnFace
Cursor cilrefault
Font [TFont]
Frametwidth |1
Height 185
HelpContext |0
HelpKepward
HelpType htContest
Hirt
Left 1]
MHame PzChart1
Orientation orHorizontal
ParentColor | True
ParentFont True
ParentShowHin True
| Sernies riesCollectic - |
ShowHint True
Tag 0
Top 115
Yizible True
*width a7
Hhues [TPsChartAxi
Thres [TPsChartAxi
All zhown

Double click Series...

Yisible True
wamColor |]civellow
bz [TPsChartéuxiz)

AoxisMame (RO
bz [TPsChartéuxiz)

Y arPosUnit af PsFloat
Warllnitame [PsHistorwnay]

YhxisMame Y0

PROSYS ‘=

...and add a new Series with the Collection Editor. Select
PsHistoryArrayl for variable.

Figure 23. Chart properties. Open the Series to get the Series Collection Editor.
You can define any number of series to draw. Each can be connected to any
variable.

Last, change the PsEdits to modify the AlarmHigh and AlarmLow of PsFloatl: you

should be able to modify the limits at runtime!

Compile and run the application. You will see a variable trend updating in the chart.

% Form1

=od

PzFloatl
150,736

High Limit {150

Low Limit |50

200

100+

E.4.2005 15:44:48

[RSS FERUN [PSS N

£.4.2005 15:45:18

E.4.2005 154547

Figure 24. Trend curve in the application of Lesson 3.

18

Prosys Sentrol 4 Tutorial PROSYS <':j,4

A Form1 M [=]
FzFloatl

37639

200

16:37:41

=
—
o
(o]

L R EEEELL P oCulED EEEEEEETRIEIES

16:383:41 el

Figure 25. Another trend style. Here Orientation = orVertical, Series.Fill.Style =
bsClear, Series.Line.Width = 2, XAxis.DateTimeFormat="hh:mm:ss’,
XAxis.Width = 50, XAxis.Mirror=True and YAxis.OtherSide=True. Go ahead
and try!

3.2.1 Trend time scale

The axes are by default aligned to the range of the data, i.e. Y-axis runs from
Variable.RangeMin t0 RangeMax and X-axis to the Positions of the variable — or
time interval of a Historyarray. But for trending purposes, it is best to specify
XAxis.AlignMin = aaInterval —and use Interval Or IntervalMs to define a fixed
time interval for the axis. In this case, the length of the X-axis will be fixed, and it
won’t stretch from a narrow to full trend interval as new data is appended to the
history array, as is otherwise the case.

In this context, it is also better to set the TickMode to tmInterval and define a good
interval into TickInterval or TickIntervalMs. See Figure 26.

19

Prosys Sentrol 4 Tutorial

PROSYS ‘=

Object Inspector]
| PsChart1 Series[0] |
Properties l Ewvents]
Symbol #00 sl
SymbolFont [TFont]
YarCaption False
Y ariable PzHistorpArrapl
YarPosUnitame | True
Y arllrith ame True
Yizible True
i armColor Cevellow
Bl Az [TPzChartsis)
Alignkd ax aaFange
Alignidin aalnterval <
autoHide False
Caption
DateTimeFormat | hh:nn:ss <
DizplayFarmat
Grid [TPen]
Interval 0003472222723
Intervaltd 2 300000 <
|sD ateTime True
LacalTimeBias True
Fd arginkd ax 0
arginkdin 0
GED 0.0006828703703
tin -0.002789351851:
Felirrar False
I ame xa
OtherSide False
Relative False
Relativelevel 0
ShowCaption True
TickCount 1
Ticklntersal 0.0006944444444
Ticklrterals | GDODO <
TickLabelOriertati 0
TickLabelRows |1
TickLabels [T5trirgs]
TickLineVigible | True
| TickMode tminterval <¢—=
I rith arne:
Wigible True d
Al zhown

Form1 =
PsFloatl
166,504
High Limit {120
Lowy Lirnit |50
i ' : :
T
1}
1] | | |
15:53:00 15:54:00 15:55:00 15:56:00 15:57.00

Figure 26. Check the marked properties (the arrows) to define a fixed Interval in
the X-Axis. The sample application demonstrates this and also the trend of alarm

limits!

20

Prosys Sentrol 4 Tutorial PROSYS <':j,4

Lesson 4. Persistent Storage
The function of the Sentrol Storage components is to enable connections between all
database types and tables and Sentrol Variables.

The current set includes several storage variants, for specific database drivers, such as
PsBDEStorage for BDE and PssQLStorage or dbExpressS. The idea is that the other
components in the Sentrol Storage palette will function with any Storage component —
and you will be free to choose the database driver you like to use.

To link your variables into the database, you have two components: the generic
PsStorageConnector, which defines correspondences between variable props and
database fields; and PsHistorian, which is used for recording variable histories.

Stage 4.1 Define a Storage

Drop the PsBDEStorage or PssQLStorage’ (Sentrol Storage) on the form and rename
it as Storagel. Also add a Tpatabase Or TSQLConnection component, respectively, to
define the DB connection. In this example, we use the 1BLocal database, which is
included in Delphi installation.

Set PsBDEStorage.DatabaseName O PsSQLStorage . SQLConnection to point to the
DB connection component from the drop-down list.

411 DatabaseProduct

In order to be able to create tables (see below) the DatabaseProduct that the storage
component is connecting to, must be defined. This enables correct SQL syntax and
data types to be used. Currently, Sentrol supports Interbase/Firebird (all versions), MS
SQL Server (all versions) and MS Access (all versions).

Note: You can still use the storage components with any database that is supported
with the mentioned database drivers. You just cannot use the automatic table creation
feature for these databases.

Stage 4.2 Object Persistence in Storage Tables
The Storage components can also be used to manage database tables. This includes:

¢ (Creating and dropping tables

¢ Adding and dropping columns

e Executing statements: insert, update, select, etc.
e Storing object data in tables

e (Creating objects from the tables!

These operations are all independent of the storage variant you choose (and therefore
also of the DB driver). You only need to define the DatabaseProduct for the Storage,
so that it can use the correct SQL syntax for your database.

¥ ADO, IBExpress are also supported (and ZeosDBO, which requires that you install the ZeosDBO
components first), if the respective drivers are available in your Delphi installation.

? SQLStorage uses dbExpress, which is not available in Delphi/C++Builder 5!

21

Prosys Sentrol 4 Tutorial PROSYS <'.’-j,4

See the help for TPsCustomStorage, TPsStorageRepository as well as
TPsStorageTable, TPsObjectTable and TPsComponentTable ONn what is
available.

421 Variable tables

By default, the storage components define three tables for storing variables and the
related information. The tables are defined in the following properties:

® ModulesTable for adding information of DataModules and Forms in the
application

® variablesTable for adding information of all variables in your application to be
stored in the database

® varPropsTable for just declaring the VarProp values and their meanings

This information is necessary, if you store, for example, history data in the database,
since they use mostly IDs to refer to the components. Thus, these tables define which
variable has which ID, so that the data can be used also external to your application,
for example to make joined queries to the data tables.

4.2.2 Enabling tables

In order to take these metadata tables in use, you just need to enable them. You can
also define the table structure in the field objects.

Object Inspector 9
| PzBDEStoragel j

Froperties l Bzl]

D atabazeM ame gentrol_tutorial
DatabazeProdd dblnterbaseFirebird
todulezT able | [TPzComponentT able]

M ame PzBDEStorage]
SeszionMame
Tag]

E'ariablesT able | [TPzComponentT able]
ClazzMameFi [TPsS5torageField)
Enabled | Trug x|
Foreignk.ey
EIDField [TPzS5torageField)
DataType | wdtinteger
Enabled | True
FieldH ame | Y ariablelD
|zk.eyField | True
Size 1]
MHameField | [TPsStorageField)
Semantich an Yariable
TableMame Wariables
YarPropsT able | [TP2StorageT able]

Al zhovwn

Figure 27. Enabling VariablesTable.

22

Prosys Sentrol 4 Tutorial PROSYS <'.’-j,4

The tables have a special property, semanticName, which defines the table
semantics(!): the TableName and FieldName of IDField will be derived from that,
unless you change them to something else.

4.2.3 Creating Tables

The storage will create all enabled tables automatically when it first connects to the
database at runtime, unless the tables already exist. You can also call createTable in
the storage or in any table object directly, to create the table. The table must have a
valid field definition (including specific bataTypes) in order to make table creation
succeed.

The components in the following examples also define table properties. To create
these tables, call:

PsHistorianl.HistoryTable.CreateTable;
PsStorageConnectorl.Table.CreateTable;

The table will be created according to the definitions in the Table.Fields. Fields that
have IsKeyField set, will also be included in the tables primary key.

If you wish to have more control over the table structure, it is better to use the
database provider’s tools for creating the tables for you. Then you just need to map
the fields correctly to the storage component definitions using the FieldName
properties.

4.2.4 Dropping Tables

To remove the tables from the database, you can use dropTable, which is also
available in the storage and in the tables.

4.2.5 Adding data to the storage tables
You can add variables and data modules to the storage by calling manually

Storage.VariablesTable.SaveComponent Or
Storage.ModulesTable.SaveComponent With your components. Or you can let the
PsHistorian and PsStorageConnector components to do this automatically (which
they will do, when you add variables to them).

Stage 4.3 Link Variables to Any Table

Drop a PsstorageConnector on the form. Set the Storage property to storagel. Set
Table.TableName to TEST. Open the Links Editor and define a link between
pPsFloatl and field ‘F’ —as well as PsBool11 and ‘B’.

Also define a couple of additional fields: 10 and ReportTime. Just add them to Links,
but without any variable connections. Set IskKeyField on for 1D. See Figure 28.

23

Prosys Sentrol 4 Tutorial PROSYS <’:._;,‘

PsStorageConnector1 =l
Links

¢ - SE| %[

D " ariable YWarProp DrataT ype FieldH ame | =K. eyField Trigger

n v alue wdtlnteger I [v [v

1 vpialue vdtD ate ReportTime n v

2 |Forml.PsFloat vpYalue wadtDouble F B v

3 |Farm1.PsBaacll vpialue villlnteger B n ~

Figure 28. Defining links between variables and database fields. DataType must
be defined if the variable datatype does not match with the field type (i.e. in
Interbase we use Integer fields for Boolean data).

As discussed earlier, you can use the CreateTable method to create the table into the
database. Or define it yourself: For example, create a table corresponding to the
following SQL definition in the 1BLOCAL database using Database Explorer:
CREATE TABLE TEST (

ID INTEGER NOT NULL,

REPORTTIME TIMESTAMP,

F FLOAT,

B INTEGER,
PRIMARY KEY (ID)

) 10

The connector can be used for saving variable data into the table as well as loading
data from the table to variables. It will not be very useful to use the same component
for both directions, though. Normally, you will copy data manually, using Load or
Save. If you wish to save data into the table automatically, define TriggerMode either
to tmDelayed Oor tmImmediate. If you are not sure, use tmbelayed, which can wait
for all changes occurring at the same time in all variables, before it will function. We
will keep to the manual savings here — and leave the trigger to tmManual.

For saving, you have two alternatives: either to insert new records or update
existing ones. Use saveType property for this. Now, leave it as st Insert.

To trigger the saving, we use a Button: drop it on the form and define its onc1ick-
event as follows (here we have added a TEdit component (IDText) to supply the 1D
values) :

PsStorageConnectorl.SetSaveParamByName ('ID',
StrToInt (IDEdit.Text));

PsStorageConnectorl.SetSaveParamByName ('ReportTime', UTCNow) ;
PsStorageConnectorl.Save;

That will provide the values for the Links that are not connected to any variables
(usually the key fields) — and saves the new record to the table.

%1 you decide to use a different database than Interbase/Firebird, you will need to modify the table
definition accordingly. Since Sentrol 3.2, you can also create the table from your application, see
above, Stage 4.2.3.

24

Prosys Sentrol 4 Tutorial PROSYS <’:._;,‘

4.3.1 Loading values back

To load values from the database back to the variables (or to set the limits and
setpoint according to a recipe, for example) goes in a similar way using the Load
method. You will have to define how the record is selected with the key field values,
using SetLoadParamByName first, for example:
PsStorageConnectorl.SetLoadParamByName ('ID',

StrToInt (IDEdit.Text)) ;
PsStorageConnectorl.Load;

Stage 4.4 History Table

The Historian works as a “narrow” historian, where it records changes in variable
properties that it is set to “watch”.

Now you can drop a PsHistorian on the form. Set storage again to Storagel and
TableName to the table you just created. Finally, define Links for all the variable
properties that you wish to record in the table. In this tutorial, you will just need to
add two links: one for PsBoo11 and one for psFloatl. See Figure 29.

M PsHistorian1 ==E
Links

¢|=| =@ %50

D Wanable YarProp Active Aggregate Deadband |Samplinglnteryal Samplinghd ode
0 Forml.PzBooll o alue v agh aw 1] 0 zmChange
1|anﬂ.P3HoaH _:vaVdue ¥ agRaw 0 n smiChange

[hone]
Form1.PsBooll
Forml.PsFloat]

Figure 29. Defining history data to be recorded by the PsHistorian.

To create the table in the database, run Historian.HistoryTable.CreateTable in your
application (set Storage.DatabaseProduct first) — or create the respective table using
your database tools.

The default table is defined according to the following Interbase/Firebird definition:

CREATE TABLE HISTORY (

VARIABLEID INTEGER NOT NULL,

VARPROP INTEGER NOT NULL,

CHANGETIME TIMESTAMP NOT NULL,

NEWVALUE FLOAT,

PRIMARY KEY (VARIABLEID, VARPROP, CHANGETIME)
y1t

You can customize this, using the HistoryTable property in the historian. For
example, if you wish to also include a reference to the data modules (stored in
Storage.ModulesTable), just enable ModuleIDField.

"' Note: the order of the fields in the primary key has some effect on the order in which data is in the
table. This order is fastest, if you will be fetching individual variable histories, but it will not show the
changes in a time line, if you want to see all variables at the same time, as is the case with the sample
application (see Figure 30). Unless by using SQL statements with “ORDER BY”".

25

Prosys Sentrol 4 Tutorial PROSYS <'.’-j,4

Compile and run the application and you should see new records appear in the
HISTORY table as the variable changes. Click the button and you should get a new
record into the TEST table.

Stage 4.5 Sample

The sample application enables you to create the tables into ‘TBLOCAL’ and
experiment with the storage connector and historian. Clicking the Report button will
add a new row into the “TEST’ report table — and refresh the datasets. Use the ID field
to determine the ID of the report.

26

Prosys Sentrol 4 Tutorial PROSYS (’:._;,4

4.5.1 Use PsStorageDataset for data aware components

Note that the sample uses a generic TPsStorageDataset'” component for displaying
the table data in the data aware. PsStorageDataset fetches the data from the storage
component, so if you switch to a different DB driver, you only need to change the
Storage!

| Form1 BB

Create Tables PsBoall True ID: |2

v Drop Old Tables PsFloat] 12

Erowse DE...

Table: VARIAELES Table: HISTORY Table: TEST
VAHIABLEID|NAME) VAHIABLEID|VAHF'HDF' |CHANGETIME NEWVALUE| st f1f 1 [B D REFORTTIME
0 PsBooll L4 1} 0 231.2007 13:23:34 1 1d 12 1 1/23.1.2007 13:23:39
1 PsFloatl o 1 0 231.2007 13:23:36 12
] 2l s
< 4 » Pk I - L L2l I - L L2

Figure 30. Storage sample.

Note that there is also a generic database browser available in the tutorial. The
browser form is a standard part of Sentrol installation. Look for TPsStorageBrowser
in PsStorageBrowserForms.pas — and add it to your application as a generic DB
browser!

"2 The storage dataset and storage browser (which uses the dataset) are not available in
Delphi/C++Builder 5. The dataset is based on TClientDataset which uses the MIDAS library. You
must include unit ‘midaslib’ in the uses clause of your project source or distribute the midas.dll
(included in Delphi installation) along with your application to be able to use it.

27

Prosys Sentrol 4 Tutorial PROSYS <'.’-j,4

Lesson 5. Byte Arrays
Byte arrays are used to handle raw device (or PC) memory data.
Sentrol has a specific variable type for using byte arrays, TPsByteArray, and also a

specific connector for mapping the byte arrays to other variable types,
TPsByteArrayConnector.

Stage 5.1 Usage of Byte Array

You can use TPsByteArray to work with device data, for example, in connection with
third party or your own device drivers — or when accessing raw data from OPC
servers. It can handle byte and bit endianness and respectively provides methods to
get and set data in the memory area to and from native data types.

Dbject Inspectar
IF'SB_I,ItE.-’-'-.rra_I,I'I TPzBytedrray *I
Properties I E\fentgl
Active True
Alarmiode arnlff
BitOrder enBigk ndian
ByteOrder enLittleE ndian
Caption PsBytefrrayl
10 10
Length 4]
I arne PzBuytediran
Tag I}

Figure 31. Properties of a Byte Array.

You just need to set the length of the byte array — and optionally change endianness
from the Intel default values, if you are accessing data from a field device. Field
devices typically use BitOrder&ByteOrder=enBigEndian, but you should refer to
the documentation for the device to ensure that you have the correct settings (which
you can, of course find out by just trying out). The Byteorder will affect when
mapping the data to native data types larger than one byte, e.g. Word, Integer, Float
etc.

You can write data to the byte array simply using for example, TPsByteArray.Bytes:

procedure TForml.SetRandomBytesBtnClick (Sender: TObject);
var
I: Integer;

begin
PsByteArrayl.BeginUpdate;
try
for I := 0 to PsByteArrayl.Length-1 do
PsByteArrayl.Bytes[I] := Random(256) ;
finally
PsByteArrayl.EndUpdate;
end;
end;

(Use BeginUpdate/EndUpdate to postpone the change notification to the end of all
your changes)

28

Prosys Sentrol 4 Tutorial PROSYS <':j,4

Other applicable properties are TPsByteaArray.Values (takes in a variant array) and
TPsByteArray.Lock, which provides direct access to the internal memory using a
PsByteArray pointer (just remember to Unlock it after you’ve done with it), e.g.
procedure TForml.SetRandomLockBtnClick (Sender: TObject);
var

I: Integer;

P: PByteArray;

begin
P := PsByteArrayl.Lock;
try
for T := 0 to PsByteArrayl.Length-1 do
P[I] := Random(256);
finally
PsByteArrayl.Unlock;
end;
end;

Now, you can take data out of the ByteArray simply using GetAsDataType, e.g.

procedure TForml.CopyToIntegerBtnClick (Sender: TObject);
var

I: Integer;

B: Boolean;

begin
I := PsByteArrayl.GetAsDataType(dtIntl6, {Signed:}True, {Byte:}0);
PsIntegerl.Value := I;
B := PsByteArrayl.GetAsDataType (dtBit, True, 2, {Bit:}0);
PsBooll.Value := B;

end;

Here, we have mapped the first two bytes of the data to PsInteger1 and the first bit
of the third byte (Byte number #2) to PsBool1.

SetAsDataType, obviously, can be used to set values to the ByteArray, respectively.

= %,JJ =PsButediray] [value] %3 =Pzlnteger] [V alue

. PzButediran] | . Pslnteger.
.......... Set Random [Bytes] |00 |=F'slnteger1 [\ alue]

coliiiiiln SetRandom[Leck] DD IIIIIIIiIliIiIll

Copy To lnteger

Figure 32. Sample application that uses a Byte Array variable.

Stage 5.2 Usage of ByteArrayConnector

Use TPsByteArrayConnector to build automatic parsing logic between native data
type variables and byte array variables, instead of doing it all manually as in the
previous sample.

29

Prosys Sentrol 4 Tutorial PROSYS Ga;!

Dbject Inspectaor

I PzButedrapConnector] TRzEutedmay = I

Froperties | Events |

Active True
Badyallez True
+] Bytediray PsBytefrrayl -

Link:z [TP=arLinkLizt]
I ame PzBytedraiConnector
Tag]

Figure 33. Properties of TPsByteArrayConnector.

You must first connect the component to a TPsByteArray as in Figure 33. Next, open
the Links Editor to define the mapping between the byte array and the variables. To

perform the same mapping as in the previous section, the links should look like in
Figure 34.

. PsBytepurayConnector] O] =]
i Link:

o e =2 1= R =Y =Y

D Wanable | YaiProp | Bit | Byte | DataType | Signed Size |
0 |Form1.Pslntegert wp alue 1] 0 dtint16 v 2

1 |Fomt.PsBoalt wphalue 0 2 dgit R R

Figure 34. Linking ByteArray to other Sentrol variables.

Now, whenever the byte array data is changed, the change is reflected to the variables.

The sample application uses TPsByteArrayConnector.Active to define when the
connector is in use.

J Form1 S I=] E3
PzBytedranl Pzlntegerl
178;216,183;73 10082
|-10062
Set Fandom [Lock] PsBaall
True
Copy ToVariables
ITrue

¥ ButetsiayConnectar Active

Figure 35. Sample application with ByteArrayConnector activated.

30

Prosys Sentrol 4 Tutorial

Lesson 6. Functions

PROSYS %

The function components enable easy online analysis with Sentrol variables. You

have a selection of predefined functions, and you have a couple of generic function

components: TPsFunction and TPsParserFunction.

Stage 6.1 TPsFunction

TPsFunction is a generic component, which enables you to write your own function

definition between any number of input variables and an output variable.

Figure 36. Properties of TPsFunction and Inputs.

Object Inspector LI| | # PsFunction1 =/alEd
|PsFuncHDn1 _:J | npLits
Properties] Events | 4 | ='| Eﬂ’r|ﬂ| & || |
Btive Falze D W ariable WarProp Symbol Trigger
Badvalues | True 0 Forml.¥ v alLie u v
DeactivateOnE False .
W
[Fiputs [TPzFunctioninputList] J 1 [Forml.Y vpvalue ¥ Z
M ame FzFunctionl
Cuitput Result[vp¥alus]
ShowE rmars True
Tag 1]
TrggerDelay |0
Trggerttdode | tmDelaped
Al ghown

Define the Variable and VarProp for Output and use the Inputs Editor to add
the input links to the component. If you provide symbols for the links, you can refer to

them using TPsFunctionInputs.Values (see the OnCalc example below).

TriggerMode specifies when the function calculation is triggered: tmDelayed is
suitable for most cases; it “waits” until all the inputs have changed13 before the
function output is recalculated. Using tmManual you specify that the output is

calculated only when you say so, e.g.

procedure TForml.CalcFunctionBtnClick (Sender:

begin

PsFunctionl.CopyToExternal (nil) ;

end;

TObject) ;

TPsFunction requires that you define the algorithm in the OnCalc event handler, for

example:

procedure TForml.PsFunctionlCalc(Sender:

Inputs:
var OutputQuality:
begin

TPsFunctionInputList; war OutputValue:
TPsVarQuality) ;

OutputQuality := Inputs.WorstQuality;

TPsCustomFunction;
Variant;

13 Actually, it dispatches a Windows message to itself, whenever an input changes. The calculation is
triggered when the message is dispatched to the function. Effectively, it waits that all inputs that are
going to change in reaction to a single operation, e.g. OPC Data Change, have changed before

triggering the calculation.

31

Prosys Sentrol 4 Tutorial PROSYS <’:._;,‘

if OutputQuality <> vpgbad then
OutputValue := Inputs.Values['x'] - Inputs.Values['y'];
end;

As you can see, it is important to check the quality of the inputs first and only
calculate the result when appropriate!

Stage 6.2 TPsParserFunction

The Parser Function simplifies your job a little bit. It takes the free TParser

component in good use, and let’s you define the Expression to calculate with the
inputs already in the Object Inspector.

14

Object Inspector X
| PzParzerFunchionl j

Froperties l Bzl]

Active Falze
Badvalues True
DeactivateOnE Falze

E spression 2=x*zin(y]

|npLts [TFzFunctionlnputlist]

Mame FzParserfFunction
Cutpuk Result[vp¥alue]

ShowE rmors True

Tag]

TriggerDelay |0

Triggertdode | tmDelayed
All ghown

Figure 37. Parser Function let's you define the Expression in the Object
Inspector.

Now, you don’t need to use OnCalc, unless you need to further customize the result.

Stage 6.3 TPsSumFunction

Sum is one of the pre-built function components available in Sentrol. It simply
overrides TPsCustomFunction.CalcOutput as follows:

procedure TPsSumFunction.CalcOutput (var Value: Variant;var Quality:
TPsVarQuality) ;
var

sum: Double;

i: Integer;

begin
Quality := vpgBad;
sum := —-1.0;
for i := 0 to Inputs.Count-1 do
if Inputs[i].Quality <> vpgBad then
begin
if (Quality = vpgBad) then
begin

' TParser is a free component, which is currently available from DATALOG’s Delphi resources,
http://www.datalog.ro/delphi/delphires.html, and included in Sentrol Tools directory.

32

Prosys Sentrol 4 Tutorial PROSYS G.’._;,‘

sum := Inputs[i].Value;
Quality := Inputs([i].Quality;
end
else
begin
sum := sum + Inputs[i].Value;
Quality := WorseQuality(Quality, Inputs[i].Quality);
end;
end;
if Quality <> vpgBad then
Value := sum;
end;

This way you can define your own function components, no matter how complicated
they are...

Stage 6.4 The sample application

The sample application let’s you select which f the functions is active — and try it out
yourself.

Form1 GEE
:"":X'"""""::::::::%. S Resdt Ll
:%:=P3Fhan ael| L B SRR
1Lar Walvel| 2 =S um[¥alue] SRR
T [Pefoatiivae S SRR
::::::.| W...].....::::%“}::: Cale Function (1] |:::::::
e D ntion] —Active Function
:%ﬁ?: =PsFloat2[Value] | - - - - - - m + Mone
R SEREE %c:-:: £ PsFunction [x:)
Lo |=PsFloat2Value] PsParserFunction] © PsParserfunction (2% siny]]
SRR RS SRR co| © PeSumPunction (x+y)
I @
i PsmumFunctiond] Dl
Figure 38. Function sample.
% Form1 =]
i Result
12 .0
12
Calc Eunction [x-y] |
- Active Function
2 (" MNone
¢ PsFunction [x-v}
2 (™ PzParzerFunction (2 ziny]]
(" PzSumFunction [X+y]

Figure 39. Sample in action.

33

Prosys Sentrol 4 Tutorial PROSYS <':j,4

Lesson 7. Animators

Sentrol Animators are used to create different animation effects according to variable
values. There are different animators for different effects: position, size, color and
visibility.

They all share the same principle: you connect the animator to a Sentrol Variable and

to any GUI Control. The animator then modifies the properties of the Control
according to the current value of the Variable as you have parameterized.

I PzCalardnirm TP=zCalornim - I __________ PeFlaatl © Lo o il

Properties | Event S L Ry i
: l verts | IIII%E?II =PsFloat1[+/alue] ::::::'@ i
Active True

- - PsFloatl - _ PsColordnirml: - 2

facvalues, . JEase L1111 |=PsFloat [Value] il
Colors [TPsColorRange] |o 0. ool
H Control PsPanell -\ - - - -~

DefaultCaolor |PsEdit]
HintFarmat |P:Labell

Hintt ode iPzFanell
HintFrop vptalie
Kind cakMomal
b ode camB ackground
M ame PzColordnim1
Tag 1]
' ariable PzFloatl
WarProp ypYalue
&)1 shown ‘,ﬁ

Figure 40. Connecting the animator to a GUI Control (PsPanell). It is already
connected to a Variable (PsFloatl). It will now modify the Control according to
the current value of the Variable.

34

Prosys Sentrol 4 Tutorial PROSYS <'.’-j,4

Stage 7.1 Color Animation

Coloring effects can be added easily with TPsColoranim. You can define whether you
want to affect the Background, Font or some other color property with Mode. If you
select camCustom, you must define the coloring action in onSetColor.

Object Inspector

I PzCalardnim TP=Colomnim - I

Froperties | Events |

Active True
Badvalues Falze
Colors [TPsColorR ange]
Control PzPanell
DefaultColor clBtinFace
HintFormat
Hintkd ode hmM ormal
HintFrop vpifalue
Kind cakMormal
tode camB ackground
Name (SRR
Tag camCusgtom
& ariable camf ont
YarFrop ¥p¥ alue
&1 shown o

Figure 41. Selecting the Coloring Mode.

Use colors to define the coloring range. Just add a number of entries to the collection
and select the respective colors. Each color will be used as long as the variable value
stays below the defined limit. In case the value is bad, the befaultColor of the
animator will be used. The last color in the range is applied to values above the limit
as well.

Object Inspectar

TP:CalarRange[d] TF:zCaolarltern i ﬁ E| 4 4

7 Editing Ps._.

Froperties | Events |

0-claqua <=5
Color B ciRed 1-clBlug <= 15
DizplayName | clRed <= 35 2 - civellow <= 25
] b axvaluie 25 2-clRed <= 35
)l shown A

Figure 42. Defining the coloring range.

7.1.1 OnGetColor & Kind

In addition or instead of using the colors, you can provide customized coloring rules
with the onGetcolor event.

You can use TPsColorAnim.Kind to modify the effects a little bit: cakalarm
predefines the color range to suite for alarming purposes (and sets varprop to
vpAlarmState); cakGradient makes the coloring to find the color by interpolating

35

Prosys Sentrol 4 Tutorial

PROSYS =

between the defined colors in the range, instead of changing in steps; cakCustom

omits the Colors and only uses OnGetColor.

HIntr o0 NmMOrmal
HintFrop vpt alue
K.ind cakMormal bl
tode cakdlarm
Mame cakCusgtam
Tag |cakbiradient
TR
Y arProp | vpY¥alue
|.-'-‘-.II shiown G

Figure 43. Kind specifies alternate behaviour.

Stage 7.2 Position & Size Animations

TPsPosAnim & TPsSizeAnim function quite similarly. They modify the position and
size of the control according to the rules. The default rule is a linear mapping
between the variable range (varMax & varMin) and the position or size range of the

Control (PosMax, PosMin / SizeMax, SizeMin).

I PsPosénimi TPsPoztnim i l ..

Properties I B |

I PsSizedniml TPs5Sizednim - l

Properties I Ewents |

Active True
AlignParent True
AutoFange ;I
B adv alues Falze
Contral Shapel
HintF ormat
Hinth ode hmMormal
HintProp wphfalue
Inverse False
Mame PsPazéniml
Orientation aoHorizantal
Pastdax 261
Pazkdin 1]
Tag 0
Variable PsFloatl
Warbd ax 50
Warbdin 1}
YarFrop vp¥alue
[shown 4

Active True
AlignParent |False
AutoR ange False
Badalues Falze

Cortral PsPanell
HintFarmat
Hintkode hmMormal
HintProp wphfalue
Inverse False
Mame PsSizednim]
Orientation aoHorizarnkal
Sizetax 250
Sizetin 83
Tag 0

' ariahle PsFloatl =l
arhdax 50
Warbdin a
“arProp yp¥alue

|AII shawn v

Figure 44. Position animator defined to move the circle Shape inside a panel -

and size animator to resize the display panel.

Orientation and Inverse affect the direction of animation. AlignParent and
AutoRange help to copy the ranges from the parent of the control and the variable,
respectively.

36

Prosys Sentrol 4 Tutorial PROSYS <’:._;,,4

Stage 7.3 The animation sample in action

The sample includes a color, position and size animator. You can see how they work
in

Form1 Pl E3 |7 Formi O[]
PsFloati PzFloatl
_ e e]
[4 [12
Ir-" Form1 [_ O] Ir‘ Forml H=]
PsFloat PsFloatl
I e
|21 ISU
Ir-" Forml [_ (O]

PsFloatl

e

37

Prosys Sentrol 4 Tutorial PROSYS <'.’-j,4

Lesson 8. OPC Server

Sentrol includes OPC Data Access Server implementation in TPsoPCProvider. This
is not a component, but an object that must be created in application initialization
phase.

Stage 8.1 Adding OPC Server to your application

You will just need to create the OPC provider in your unit initialization as

follows':

uses PsOPCProvider;

var
MyOPCProvider: TPsOPCProvider;

initialization
MyOPCProvider := TPsOPCProvider.Create;
with MyOPCProvider do
begin
AutoRun := True; // Default = True
CLSID := '{CBC804CA-623B-4D2B-9E60-B54A55398EF51}"';
ServerName := 'My.OPC'; // ProgID
Description := 'My OPC Server';
Vendor := 'Me';
VendorInfo := 'My Test Server';
AddressSpace.IncludeProps := True; // Default=False
Initialize;
end;
finalization

MyOPCProvider.Free; // Notifies Shutdown

You must provide the object the cLs1D (use Shift-Ctrl-G to generate a new GUID in
Delphi editor) and serverName (the ProgID) — and call 1nitialize. That will
register the component and make it available to COM Clients.

Also, remember to free the object at finalization: it will call the clients with
I0oPCcShutdown callback.

You can now run the application and connect to it using an OPC Client.

Note: if you only wish to register the server and let it start automatically when the
client connects to it, run it with the option ‘/regserver’, e.g. ‘Projectl /regserver’. To
uninstall it, use ‘/unregserver’.16

" In C++, you don’t have any initialization section, so you must just create the OPCProvider before the
application is run. See the C++ version of the sample code included in the installation package.

' In Windows Vista, you must register the server with administrator rights. For example, run it once
"as Administrator" from the Windows Explorer.

38

Prosys Sentrol 4 Tutorial PROSYS \43."._;,4

&) OPC Server Address Space: \\localhost\My.OPC =/
ltem Dfsk ~|Form1 PsFloatl vpvalue K
Branches tems

= Form1 wpi'alue Cancel

PsFloat1 wpLaption
wpE ngllnit
vpdlarmState ~
wpdlarmLow L& Load..
vpdlarmHigh
vpfarnLow & Save .
vpredarnHigh —_—
wpSetpoint -
vpDiff 'Fg Hefrezh
vphdean
wpStdDey
wpbdin
wphd ax
wplther
wpOther2

Ready, Form1 .

Figure 45. Address Space of the sample OPC Provider.
'@ Prosys OPC Client 8[=[=]

File View Help

D= @

1. Select the OPC Server ——— [2 Connect to the Servel —4. Set the properties of the OPC Group
Host llocalhost Refrezh | Server I 1 | Connect Grouph ame IGroup
Servers Cah . - N ID—
: Sleaory I ST : ;1 PercentD eadB and
?ewerS tatus e 120
UpdateR ate I‘I 0oo
ChangeR ate 1003
i Datalource Cache 'i
Mame r=tiy | est ¥ Active [~ Asunc
lMy OPC Server =
3. Defing the OPC Growps | ClientHandle 1
Yendor T
IME o Add ServerHandle 1
CLEID Remave I Ok Cancel
I{EBEBD4E.-’-‘«-B2SB-4DZB -3E B0-B54455398EF 5}

8. Defing the OPC Items for the Group
Add ltem Remove ltem(s] | Refresh I Quick Add:l Qf’

Forml PsFloat] vp¥alue 22123 18.5.2005 13:43:59.708 Good:Mon-specific;Mat limited True

prosYs @ The Industrial Software Company hitp: //www._prosys.fi

Figure 46. Connected to My OPC Server (with Prosys OPC Client).

Stage 8.2 Customization
In principle, the OPC provider will just publish all variables in the project as shown in
Figure 45.

39

Prosys Sentrol 4 Tutorial PROSYS <'.’-j,4

The Item Access Rights are set automatically depending on the selected VarProp, but
they can also be overridden using TPsOPCProvider.OnItemAccessRights. You will
need to create the event handler manually and connect it to MyoPCProvider, for
example in FormCreate:
procedure TForml.FormCreate (Sender: TObiject);
begin

MyOPCProvider.OnItemAccessRights := MyOPCProviderItemAccessRights;
end;

procedure TForml.MyOPCProviderItemAccessRights (Sender: TObject;
Variable:
TPsVar; VarProp: TPsVarPropType; var AccessRights:
TPsOPCAccessRights) ;
begin
if VarProp = vpValue then
AccessRights := arReadOnly;
// else use the default logic
end;

Alternatively, to guarantee that the clients cannot modify anything, you could just set:
MyOPCProvider.ReadOnly := True;

The server will be enabled immediately after startup for client connections. If you
want to prepare your data first, you can set AutoRun to False and call Run yourself,
when the time is appropriate. AutoRun tries to wait until all forms have been created,
but it may not satisfy your needs. If the clients are allowed to connect to the server too
early, the server address space may not contain everything, yet.

Note: After Sentrol 3.1, the address space should react dynamically to changes in the
data modules. Even new data modules added to Application should be automatically
added to the address space, if variable components are inserted in them. This
functionality is controlled by the properties AutoAddApplication and AutoUpdate in
the AddresssSpace.

AddressSpace. IncludeProps is used to define whether the variable properties are
shown in the address space. By default it is False, and the address space only
includes the variables (no vpvalue, etc. under that). The individual properties can
always be accessed, though, as OPC item properties or just by adding the respective
extensions to the variable IDs, e.g. Form1.PsFloatl.vpValue.

There are also a few other properties in TPsoPCProvider that affect how the server
works. Check the respective documentation to learn about them.

8.2.1 Hierarchical address space

The OPCProvider will find all data modules and forms that are owned by Application
— and create the address space according to that. But, it will also locate data modules
and forms owned by those modules and forms also, so you can use the ownership
hierarchy to initialize a deeper hierarchy, too. For example, if you initialize a
SubModule under Form1 like this:

Application.CreateForm(TForml, Forml);
SubModule := TSubModule.Create(Forml);

You will get an address space as in Figure 47.

40

PROSYS =

Prosys Sentrol 4 Tutorial

& OPC Server Address Space: \\localhost\My.0OPC =JoJEd

uemIDh}|me1EubMdeaPSBDmTvaean 0k

Branches tems

= My.OPC

|- Forrn1
-~ Subbdodule
FzBool
4 P=Stringl
+- PzFloatl

v allie
vplaption
wpEngldnit
vpdlarmState
wpdlarmbon
vpdlarmHigh
wptafarnlow
wpif arnHigh
wpS etpoint

= Load...

& Save..

Cancel

vl M

vokdean]

wpStdDey b ode

vpMin Flat

wpbd an -

vpD ezcription {+ Hierarchial
wpdlarm T ext

vpdlarmHelp

wplOther

wpOther2

Ready. Form 1/5SubModule

Figure 47. Hierarchical address space.

8.2.2 Fully customized address space

TPsOPCProvider.AddressSpace can be used to customize the address space contents
even more. In order to create a customized hierarchy without the relation to
Application object, you must first disable the default behavior:

MyOPCProvider .AddressSpace.AutoAddApplication := False;
MyOPCProvider .AddressSpace.AutoUpdate := False;

You can then add your modules and variables using the calls to

RootIndex := MyOPCProvider.AddressSpace.AddModule (Self, -1,
'MyDevice') ;

MyOPCProvider .AddressSpace.AddVariable (RootIndex, PsFloatl,
'Temperature');
You can also create new components or variables on the fly and add them to the
address space:

Pressure := TPsInteger.Create(nil);
MyOPCProvider .AddressSpace.AddVariable (RootIndex, Pressure,
'Pressure') ;

You can also customize the item id separator:

MyOPCProvider .AddressSpace.PathSeparator := '/';

41

Prosys Sentrol 4 Tutorial

£) OPC Server Address Space: \\localhost\My.OPC (=0

Item IDs): |

tlems

bl evice/Temperature
byl evice/Pressure

Ready.

Cancel

= Load...

& Save...

E‘g}; Refresh

{* iFlat

Ere

(" Hierarchial

Figure 48. Fully customized address space in flat mode.

8.2.3 Simulation Server

PROSYS %

You should also take a look at the Prosys OPC Simulation server, provided at
http://www.prosys.fi/downloads.html. The full source code is included and all the

material required for installing the servers. The simulation server demonstrates the
use of TPsOPCProviderForm, Which can be used to display client connections to your

SErver.

42

Prosys Sentrol 4 Tutorial PROSYS <'.’-j,4

Lesson 9. Creating components at run-time

Most of the lessons here have shown you how to create a project by defining the
components at design time. Although this is very convenient, especially for small
projects, it may become necessary quite soon to learn to configure your project
dynamically at run-time.

Stage 9.1 Adding Links to Connectors

In principle, you can just create the same components and configure their properties
the same way that you do at design time. One note is necessary, though: The Links
property in the different connectors (as well as some other list type properties, such as
TPsState.States) require that you cast the items to correct type. For example, if you
add a new link to TPsoPCConnector, you need to cast the result to TPsoPCVarLink, in
order to get access to all the properties
var

Connector: TPsOPCConnector;

Variable: TPsVar;

Link: TPsOPCVarLink;
begin

/.

// TPsVarLinkList.Add is defined to return a generic TPsVarLink

Link := Connector.Links.Add as TPsOPCVarLink;

Link.ItemID := ’'YourItemID’;

// ...
end;

Stage 9.2 “Helper” objects

There are of course some objects that you can only access from the code at run-time.
Take a look at the unit PsClasses, for example: you will find components such as
TPsStringList, TPsStringTable, TPsStringTree, Which are all used in the Sentrol
internals, but you can also benefit from them yourself.

While working with Variables, you should consider using TPsvarList whenever you
need to keep lists of your variables. If you Attach it to a Component (e.g. Data
Module or Form), it will always automatically contain the variables owned by that
component. Useful, isn’t it!

Please, consult the Sentrol Help for more about these objects.

Stage 9.3 Sample project

The sample project related to this lesson shows you how to create a number of OPC
Connectors and Variables at runtime and how to link them. It also demonstrates the
usage of standard string lists and TPsvarList to keep and show the components in

GUI controls (using Assign methods).

Also note that the connector.Links can be assigned to string lists and vice versa (if
all the referred components just exist). And you can save and load them to files with
Links.SaveToFile & LoadFromFile (Or ...Stream), respectively.

43

Prosys Sentrol 4 Tutorial PROSYS \453,‘

-

=1 CRuntimeCreateForm =Jo)E
Connectors Links
Connector(CRuntimeCreateForm.Random_PsFloatl;vpValue; true;vdtDouble; false
Connectorl CRuntimeCreateForm. Triangle_PsFloatl;vpValue;;true;vdtDouble; false,

CRuntimeCreateForm.SawTooth_PsFloatl;vpValue;;true;vdtDouble; fal:

Variables Random_PsFloatl

23,7556530628353

Triangle_PsFloat1
SawTooth_PsFloatl
Random_PsInteger 1
Triangle_PsInteger1
SawTooth_PsInteger 1

Figure 49. The run-time sample project (screen shot from the C++ version).

44

