
Prosys OPC UA SDK for Java - Migration Guide

Migration Guide
From version 1.x to 2.2

Table of Contents
Migration from SDK 1.x to 2.2 . 1

1.1. Installation . 1

1.2. Deployment . 1

1.3. Stack improvements . 1

1.3.1. HTTPS Protocol . 1

1.3.2. Bind Addresses. 1

1.3.3. Basic256Sha256 and Big Certificates . 2

1.3.4. Security Libraries . 2

Bouncy Castle . 2

Spongy Castle . 2

Sun JCE . 2

1.4. SDK changes . 3

1.4.1. ApplicationIdentity and multiple certificates . 3

1.4.2. UaClient object . 3

1.4.3. UaServer . 4

HTTPS . 4

Basic256Sha256 SecurityMode . 5

1.4.4. NodeManager and server-side UaNodes . 5

Node instantiation . 5

Java classes for the nodes . 5

1.4.5. IoManager . 6

1.4.6. EventType and EventManager . 6

1.4.7. HistoryManager . 6

1.5. Code generation and nodes . 7

Migration from SDK 1.x to 2.2
This document describes the changes in the SDK design between version 1.x and 2.2. You can use this

document to help you to migrate your applications built with SDK 1.x to use the new SDK version 2.2.

1.1. Installation

The SDK comes with a new version of the OPC Foundation Java Stack 1.02. It uses some new libraries,

which you will also need to use in your application, to access the res pective new features. These

libraries are the Apache HTTP Components (http*.jar), Apache Commons Logging (commons-

logging-.jar, used by http-client.jar), Spongy Castle (sc*.jar, the Android version of Bouncy Castle

security library) and finally Simple Logging Façade for Java (slf4j*.jar).

1.2. Deployment

The libraries are now optional, except for the slf4j-api library (slf4j-api-.jar). If you wish to continue

using log4j, you will need to use also the slf4j-to-log4j bridge (slf4j-log4j12-).Instead of log4j, slf4j

can also support other logging libraries, making it more flexible in general. The HTTP Components

(http*.jar) are only necessary, if your application supports HTTPS. If Bouncy Castle security

libraries (bc*.jar) are not used, the SunJCE libraries, which are included in Java S E are used

instead. In Android, Spongy Castle (sc*.jar) must be used to support any security features. See more

below (3.4).

So, in principle, if you wish to continue with your old application, you can just do it – and only need to

update Bouncy Castle libraries to the new version, 1.52, in addition to the Opc.Ua.Stack-

1.02.*.jar – and add the two slf4j libraries in your class path.

1.3. Stack improvements

SDK 2.x will now use the OPC Foundation stack 1.02, instead of 1.01. This enables several new

features.

1.3.1. HTTPS Protocol

The new stack enables the HTTPS protocol. It exposes endpoints that use the https-uabinary
transport. In practice, UA binary encoded messages are delivered via HTTP requests and

responses. Security is provided by standard SSL/TLS security protocols. The level of security can be

selected between TLS 1.0, TLS 1.1 (recommended) and TLS 1.2. Each application defines which

TLS versions it supports and the applications negotiate a common encryption cipher accordingly

on connection.

1.3.2. Bind Addresses

The server SDK 1.x used to define properties for initialization of different endpoints using various

hostnames and IP address names. The new stack enables binding each endpoint to certain

network interfaces via specific InetAddresses. This enables a better way to configure which

endpoint is available to which network segments and it is no longer necessary to define various

1

endpointUrls for that task. Therefore, the respective properties (UseLocalHost, UseAllIpAddresses) of

UaServer have been deprecated.

1.3.3. Basic256Sha256 and Big Certificates

The new stack adds support for a new security policy, Basic256Sha256. It can only be used with big

certificates (2048 to 4096 bits). This may require that the applications define two certificates, if they

wish to continue using 1024 bit certificates (which are not compatible with this new profile) or wish to

use 4096 bit certificates (which are only usable with the new profile).

Since all OPC UA applications do not support this feature, yet, the Basic256Sha256

security policy is not enabled by default. But the Stack has been updated to use

2048 bits as the default certificate size (which enables all security policies).

1.3.4. Security Libraries

The security library usage has been changed to enable different libraries to be used. Since 2.2 this is

also fully flexible. The stack will pick the used library automatically depending on which one it finds

from the class path. If necessary, you can also link to any other security implementation. See the

README.txt for more information.

Bouncy Castle

Bouncy Castle is still the primary option in standard Java environments. The stack is now using version

1.52. This version includes two jar-files (bcprov & bcpkix) instead of one as in 1.46 (which was used by

SDK 1.x). To keep on using Bouncy Castle, you just need to keep that in the class path of your

application.

Spongy Castle

Spongy Castle is the full version of Bouncy Castle for Android. Android typically has a limited

version of Bouncy Castle available by default, but it does not provide all the functionality that is

necessary for the OPC UA stack. Spongy Castle consists of three necessary jar files. You should link

your Android project against these, instead of the Bouncy castle libraries.

Sun JCE

The stack can also use now the Sun JCE classes for all security related features. This has not been tested

as much as the Bouncy Castle support, so keep that in mind if you take it in use. If you don’t include

Bouncy Castle (or Spongy Castle) in your application’s class path, the Sun JCE classes will be used

automatically.

The Sun classes are only available with the Standard Java JVM. Only Oracle JVMs

have been tested in general. Also, you will need to install the “JCE Unlimited

Strength Jurisdiction Policy Files” into the JRE to enable 256-bit security. Again, see

the README.txt for more details.

2

1.4. SDK changes

This section describes the major changes in the SDK. In addition, several details have changed, also

affecting some interfaces and method signatures (throws clauses mostly). Check the Release Notes for

a more complete list of changes.

1.4.1. ApplicationIdentity and multiple certificates

The ApplicationIdentity.loadOrCreateCertificate() has now an overload version, which can take an array

of keySizes as well as an issuerKey for signing the certificates.

Since the endpoint related properties are deprecated in the server, the application is typically

bound to just one host name. Therefore, the HostNames argument to loadOrCreateCertificate is not

normally necessary any more and this works fine (without issuerKeys):

final ApplicationIdentity identity = ApplicationIdentity
.loadOrCreateCertificate(appDescription, "Sample Organisation",
/* Private Key Password */"opcua",
/* Key File Path */privatePath,
/* Issuer Certificate & Private Key */null,
/* Key Sizes for instance certificates to create */keySizes,
/* Enable renewing the certificate */true);

If HTTPS is to be used a HttpsCertificate must be assigned to Applicationidentity as well, e.g.:.

identity.setHttpsCertificate(
ApplicationIdentity.loadOrCreateHttpsCertificate(
appDescription, hostName, "opcua",
issuerKeys, privatePath, true));

Both the client and server applications can use the same identity definitions. Unless you need to use

big certificates, you won’t need to change to that, though.

1.4.2. UaClient object

The UaApplication.Protocol enumeration has a new option, Https, which can be used with

UaClient.setProtocol(). You can also define an URI of mode “https://…”. Also the old Opc value has been

renamed to OpcTcp.

The new client side property for configuring the HTTPS connection is:

UaClient.getHttpsSettings()

The following properties of the settings are used to define the security policies and certificate

validation

3

.get/setHttpsSecurityPolicies()

.get/setCertificateValidator()

.get/setHostnameVerifier()

The default policies are TLS 1.0 and TLS 1.1 (there is a problem with the current JRE 7, which makes

TLS 1.2 not to work with the Java stack). By default, all certificates and all host names are accepted. In

addition, UaClient enables browsing endpoints by Protocol with

UaClient.discoverEndpoints(Protocol...)

And you can now use a discovered endpoint to define the connection with

UaClient.setEndpoint(EndpointDescription)

1.4.3. UaServer

HTTPS

To enable HTTPS on the server side, you only need to define

UaServer.setPort(Protocol.Https, <portnr>)

Using a non-zero port number will add an HTTPS endpoint to the server. You can use the new

BindAddresses to limit the availability of the each protocol.

UaServer.setBindAddresses(<protocol>, <inetAddresses>)

By default, the HTTPS endpoint will use the same ServerName as the binary endpoints. (UA)

SecurityMode is always None for HTTPS, but the enabled TLS security policies are defined with

UaServer.getHttpsSettings()
UaServer.setHttpsSecurityPolicies(<securityPolicies>)

and properties

.get/setHttpsSecurityPolicies()

.get/setCertificateValidator()

.get/setHostnameVerifier()

similar to the client side.

4

HttpsSecurityPolicies.ALL includes all default TLS security policies (which is {TLS1_0, TLS_1_1} at the

moment).

Basic256Sha256 SecurityMode

SecurityMode.ALL_102 includes now also the new profile, Basic256Sha256, which on the other hand

requires at least 2048 bit certificate. If you only use a smaller one, the profile will not be

enabled.

SecurityMode.ALL, which is the default, still equals to ALL_101, which does not include the new profile,

since support for this mode is not available in other stacks, yet (as mentioned above).

1.4.4. NodeManager and server-side UaNodes

The big change in 2.0 is that the node objects for standard UA types are now based on generated

classes (see 5.), whereas in 1.x they were hand-written. This affects a few things.

Node instantiation

In general, the nodes are now created with a NodeBuilder instead of the constructors. And there is a

nice convenience method in NodeManagerUaNode for that: createInstance(), which you can use, for

example as:

DataItemType node = nodeManager.createInstance(DataItemTypeNode.class, "DataItem");

By default this will create a complete object or variable instance including a structure, as defined in the

type address space. Only the Mandatory nodes are created for the nodes by default, but you can

configure which optional nodes should be created using the NodeBuilder directly. For example:

// Configure the optional nodes using a NodeBuilderConfiguration
NodeIdBasedNodeBuilderConfiguration conf = new NodeBuilderConfiguration()
.addOptional(Identifiers.AnalogItemType_EngineeringUnits.getValue())
.addOptional(Identifiers.AnalogItemType_InstrumentRange.getValue())
.addOptional(Identifiers.DataItemType_Definition.getValue());

// Use the NodeBuilder to create the node
final AnalogItemType node = nodeManager
.createNodeBuilder(AnalogItemType.class, conf)
.setName("AnalogItem").build();

Instead of using the NodeId of the instance declarations (elements of the type), you can use their

BrowseNames or BrowsePaths.

Java classes for the nodes

SDK 1.0 contained implementations of the standard nodes in com.prosysopc.ua.server. nodes.opcua.

Since SDK 2.0, the standard nodes are in com.prosysopc.ua.types.server.opcua. These are generated

5

classes and therefore they behave and are used a bit differently. As mentioned above, the nodes

should be created with the NodeBuilder and they don’t have any public constructor. They have

similar setters and getters for the property and variable values as in the old SDK. In addition, each

object and variable node is available from the classes.

If you have your own node implementations, you will need to modify them accordingly. The server side

node implementations are now named XxxTypeNode, whereas in the SDK 1.0 they were XxxType.

Also, you should not need to implement the sub nodes yourself in the Java types, but you can rely on

the NodeBuilder to create the structure for you. You just need to ensure that the type definition

defines the structure – and specifies the ModellingRules as well for the instance declarations. [1:

Instance declaration is the object or variable of the type. It defines how the respective instance in the

actual object or variable should appear.] See the MyEventType and MyNodeManager of the new

SampleConsoleServer.

1.4.5. IoManager

IoManager includes new overridable methods, beginRead, beginWrite, endRead & endWrite, which can be

used to handle complete read/write calls or just to prepare communications for the individual value

settings.

1.4.6. EventType and EventManager

The EventManager itself is not changed very much. Triggering events is done similar as with the old

event types: you create an instance of an event or condition node and call triggerEvent() for it.

The old EventType has been removed though, since now all the standard event types are

generated for you. And you can instantiate new event objects using

NodeManagerUaNode.createEvent(). See MyNodeManager.sendEvent() of the new SampleConsoleServer.

If you need to override your own event or condition types, note that the new standard types are now

XxxTypeNode, instead of XxxType.

This affects also the EventManagerListener, which must refer to the new node types instead of the old

ones.

1.4.7. HistoryManager

HistoryManager includes new overridable methods, beginHistoryRead, beginHistoryUpdate,

endHistoryRead & endHistoryUpdate, which can be used to handle complete read/update calls or just to

prepare a history dataset, which is then used when retrieving individual histories for specific

readings. The begin methods can return a custom dataset (anything you need), which is then provided

for the following methods as a parameter.

The same change applies to HistoryManagerListener.

You will need to modify your HistoryManager or HistoryManagerListener implementations according to the

new method signatures.

6

1.5. Code generation and nodes

One of the biggest changes with SDK 2.0 is the code generator (codegen), which can be used to

generate Java classes out of UA Nodeset definitions (in the Nodeset2.xml format).

The nodes used for the OPC UA standard types have now also been generated. This will lead to some

changes, most notable in how the nodes must be constructed in the server side.

In practice, this will affect the Server object (available from NodeManagerRoot.getServerData()) and the

condition types. Since the nodes have also had a lot of functionality written into them, it is possible

that the changes may affect your application.

The standard code-generated classes can be found in packages * com.prosysopc.ua.types.opcua contains

interfaces for each UA type * com.prosysopc.ua.types.opcua.client contains client side implementations *

com.prosysopc.ua.types.opcua.server contains server side implementations

The Java interface for each UA types is generated as xxxType, the corresponding client side class as

xxxTypeImpl and the server side class as xxxTypeNode. For example, AnalogItemType,

AnalogItemTypeImpl and AnalogItemTypeNode. In addition, there are Base-classes for each class.

On the client side, the getNode methods from AddressSpace are overloaded with ones that take a Class

parameter, therefore you can now call

AnalogItemType node = uaClient.getAddressSpace().getNode(NodeId, AnalogItemType.class)

See the documentation for the codegen for more details on the usage of it and the new nodes. Note

that they are now available on the client side as well! For the respective changes applied to the server,

see NodeManager and EventManager sections.

7

	Prosys OPC UA SDK for Java - Migration Guide
	Table of Contents
	Migration from SDK 1.x to 2.2
	1.1. Installation
	1.2. Deployment
	1.3. Stack improvements
	1.3.1. HTTPS Protocol
	1.3.2. Bind Addresses
	1.3.3. Basic256Sha256 and Big Certificates
	1.3.4. Security Libraries
	Bouncy Castle
	Spongy Castle
	Sun JCE

	1.4. SDK changes
	1.4.1. ApplicationIdentity and multiple certificates
	1.4.2. UaClient object
	1.4.3. UaServer
	HTTPS
	Basic256Sha256 SecurityMode

	1.4.4. NodeManager and server-side UaNodes
	Node instantiation
	Java classes for the nodes

	1.4.5. IoManager
	1.4.6. EventType and EventManager
	1.4.7. HistoryManager

	1.5. Code generation and nodes

