
OPC UA Java SDK Migration to 2.0

9.7.2014 Page 1/8

Prosys OPC UA Java SDK

Migration from SDK 1.x to 2.0

This document describes the changes in the SDK design between version 1.x and 2.0. You can

use this document to help you to migrate your applications built with SDK 1.x to use the new SDK

version 2.0.

OPC UA Java SDK Migration to 2.0

9.7.2014 Page 2/8

Contents

1. Installation ... 3

2. Deployment ... 3

3. Stack improvements .. 3

3.1 HTTPS Protocol .. 3

3.2 Bind Addresses .. 3

3.3 Basic256Sha256 and Big Certificates ... 3

3.4 Security Libraries ... 4

3.4.1 Bouncy Castle ... 4

3.4.2 Spongy Castle.. 4

3.4.3 Sun JCE .. 4

3.4.4 Unrestricted Policy Files required for 256 bit encryption! ... 4

5. SDK changes ... 4

5.1 ApplicationIdentity and multiple certificates .. 4

5.2 UaClient object .. 5

5.3 UaServer .. 5

5.3.1 HTTPS .. 5

5.3.2 Basic256Sha256 SecurityMode .. 6

5.4 NodeManager and server-side UaNodes .. 6

5.4.1 Node instantiation .. 6

5.4.2 Java classes for the nodes .. 6

5.5 IoManager ... 7

5.6 EventType and EventManager .. 7

5.7 HistoryManager ... 7

6. Code generation and nodes .. 7

OPC UA Java SDK Migration to 2.0

9.7.2014 Page 3/8

1. Installation
The SDK comes with a new version of the OPC Foundation Java Stack 1.02. It uses some new

libraries, which you will also need to use in your application, to access the respective new features.

These libraries are the Apache HTTP Components (http*.jar), Apache Commons Logging

(commons-logging-*.jar, used by http-client*.jar) and Spongy Castle (sc*.jar, the Android version of

Bouncy Castle).

2. Deployment
The libraries are now optional, except for the log4j library (log4j-1.2.17.jar). The HTTP Components

(http*.jar) are only necessary, if your application supports HTTPS. If Bouncy Castle security

libraries (bc*.jar) are not used, the SunJCE libraries, which are included in Java SE are used

instead. In Android, Spongy Castle (sc*.jar) must be used to support any security features. See

more below (3.4).

So, in principle, if you wish to continue with your old application, you can just do it – and only need

to update Bouncy Castle libraries to the new version, 1.47, in addition to the Opc.Ua.Stack-

1.02.*.jar.

3. Stack improvements
SDK 2.0 will now use the OPC Foundation stack 1.02, instead of 1.01. This enables several new

features.

3.1 HTTPS Protocol
The new stack enables the HTTPS protocol. It exposes endpoints that use the ‘https-uabinary’

transport. In practice, UA binary encoded messages are delivered via HTTP requests and

responses. Security is provided by standard SSL/TLS security protocols. The level of security can

be selected between TLS 1.0, TLS 1.1 (recommended) and TLS 1.2. Each application defines

which TLS versions it supports and the applications negotiate a common encryption cipher

accordingly on connection.

3.2 Bind Addresses
The server SDK 1.x used to define properties for initialization of different endpoints using various

hostnames and IP address names. The new stack enables binding each endpoint to certain

network interfaces via specific InetAddresses. This enables a better way to configure which

endpoint is available to which network segments and it is no longer necessary to define various

endpointUrls for that task. Therefore, the respective properties (UseLocalHost,

UseAllIpAddresses) of UaServer have been deprecated.

3.3 Basic256Sha256 and Big Certificates
The new stack adds support for a new security profile, Basic256Sha256. It can only be used with

big certificates (2048 to 4096 bits). This may require that the applications define two certificates, if

they wish to continue using 1024 bit certificates (which are not compatible with this new profile) or

wish to use 4096 bit certificates (which are only usable with the new profile).

Note: Since the other stacks of OPC Foundation (.NET & AnsiC) do not support this feature, yet,

the Basic256Sha256 security profile is not enabled by default. But the SampleConsoleServer has

been updated to initialize certificates of size 1024 and 4096 bits.

OPC UA Java SDK Migration to 2.0

9.7.2014 Page 4/8

3.4 Security Libraries
The security library usage has been changed to enable different libraries to be used. This is not

fully flexible yet, but you have a couple of alternatives available. The stack will pick the used library

automatically depending on which one it finds from the class path.

3.4.1 Bouncy Castle

Bouncy Castle is still the primary option in standard Java environments. The stack is now using

version 1.47. This version includes two jar-files (bcprov & bcpkix) instead of one as in 1.46 (which

was used by SDK 1.x). To keep on using Bouncy Castle, you just need to keep that in the class

path of your application.

3.4.2 Spongy Castle

Spongy Castle is the full version of Bouncy Castle for Android. Android typically has a limited

version of Bouncy Castle available by default, but it does not provide all the functionality that is

necessary for the OPC UA stack. Spongy Castle consists of three necessary jar files. You should

link your Android project against these, instead of the Bouncy castle libraries.

3.4.3 Sun JCE

The stack can also use now the Sun JCE classes for all security related features. This has not

been tested as much as the Bouncy Castle support, so keep that in mind if you take it in use. If you

don’t include Bouncy Castle (or Spongy Castle) in your application’s class path, the Sun JCE

classes will be used automatically.

Note that the Sun classes are only available with the Standard Java JVM. Only Oracle JVMs have

been tested in general.

3.4.4 Unrestricted Policy Files required for 256 bit encryption!

4. The stack is now using the standard Java Cryptography Extension (JCE) framework for enabling

the selection of security library that is used (via SecurityProvider). The main consequence is that

since the standard security policy in the JCE allows a maximum of 128-bit encryption algorithms,

you must install the “JCE Unlimited Strength Jurisdiction Policy Files” into the JRE to enable 256-

bit security. See the release notes for 2.0.0 for the links – or look them up from the Oracle web site

for the version of your JRE. Unfortunately, these may not be delivered with the stack or SDK.

5. SDK changes
This section describes the major changes in the SDK. In addition, several details have changed,

also affecting some interfaces and method signatures (throws clauses mostly). Check the Release

Notes for a more complete list of changes.

5.1 ApplicationIdentity and multiple certificates
The ApplicationIdentity.loadOrCreateCertificate() has now an overload version, which

can take an array of keySizes as well as an issuerKey for signing the certificates.

Since the endpoint related properties are deprecated in the server, the application is typically

bound to just one host name. Therefore, the HostNames argument to loadOrCreateCertificate is

not normally necessary any more and this works fine (without issuerKeys):

final ApplicationIdentity identity = ApplicationIdentity

 .loadOrCreateCertificate(appDescription, "Sample Organisation",

 /* Private Key Password */"opcua",

 /* Key File Path */privatePath,

 /* Issuer Certificate & Private Key */null,

OPC UA Java SDK Migration to 2.0

9.7.2014 Page 5/8

 /* Key Sizes for instance certificates to create */keySizes,

 /* Enable renewing the certificate */true);

If HTTPS is to be used a HttpsCertificate must be assigned to Applicationidentity as well, e.g.:.

identity.setHttpsCertificate(

 ApplicationIdentity.loadOrCreateHttpsCertificate(

 appDescription, hostName, "opcua",

 issuerKeys, privatePath, true));

Both the client and server applications can use the same identity definitions. Unless you need to

use big certificates, you won’t need to change to that, though.

5.2 UaClient object
The UaApplication.Protocol enumeration has a new option, Https, which can be used with

UaClient.setProtocol(). You can also define an URI of mode “https://...”. Also the old Opc value

has been renamed to OpcTcp.

The new client side property for configuring the HTTPS connection is:

UaClient.getHttpsSettings()

The following properties of the settings are used to define the security policies and certificate

validation

.get/setHttpsSecurityPolicies()

.get/setCertificateValidator()

.get/setHostnameVerifier()

The default policies are TLS 1.0 and TLS 1.1 (there is a problem with the current JRE 7, which

makes TLS 1.2 not to work with the Java stack). By default, all certificates and all host names are

accepted.

In addition, UaClient enables browsing endpoints by Protocol with

UaClient.discoverEndpoints(Protocol...)

And you can now use a discovered endpoint to define the connection with

UaClient.setEndpoint(EndpointDescription)

5.3 UaServer

5.3.1 HTTPS

To enable HTTPS on the server side, you only need to define

UaServer.setPort(Protocol.Https, <portnr>)

Using a non-zero port number will add an HTTPS endpoint to the server. You can use the new

BindAddresses to limit the availability of the each protocol.

UaServer.setBindAddresses(<protocol>, <inetAddresses>)

 By default, the HTTPS endpoint will use the same ServerName as the binary endpoints. (UA)

SecurityMode is always None for HTTPS, but the enabled TLS security policies are defined with

UaServer.getHttpsSettings()

UaServer.setHttpsSecurityPolicies(<securityPolicies>)

OPC UA Java SDK Migration to 2.0

9.7.2014 Page 6/8

and properties

.get/setHttpsSecurityPolicies()

.get/setCertificateValidator()

.get/setHostnameVerifier()

similar to the client side.

HttpsSecurityPolicies.ALL includes all default TLS security policies (which is {TLS1_0,

TLS_1_1} at the moment).

5.3.2 Basic256Sha256 SecurityMode

SecurityMode.ALL_102 includes now also the new profile, Basic256Sha256, which on the other

hand requires at least 2048 bit certificate. If you only use a smaller one, the profile will not be

enabled.

SecurityMode.ALL, which is the default, still equals to ALL_101, which does not include the new

profile, since support for this mode is not available in other stacks, yet (as mentioned above).

5.4 NodeManager and server-side UaNodes
The big change in 2.0 is that the node objects for standard UA types are now based on generated

classes (see 6.), whereas in 1.x they were hand-written. This affects a few things.

5.4.1 Node instantiation

In general, the nodes are now created with a NodeBuilder instead of the constructors. And there is

a nice convenience method in NodeManagerUaNode for that: createInstance(), which you can use,

for example as:

DataItemType node = nodeManager.createInstance(

 DataItemTypeNode.class, "DataItem");

By default this will create a complete object or variable instance including a structure, as defined in

the type address space. Only the Mandatory nodes are created for the nodes by default, but you

can configure which optional nodes should be created using the NodeBuilder directly. For example:

// Configure the optional nodes using a NodeBuilderConfiguration

NodeIdBasedNodeBuilderConfiguration conf = new NodeBuilderConfiguration()

 .addOptional(Identifiers.AnalogItemType_EngineeringUnits.getValue())

 .addOptional(Identifiers.AnalogItemType_InstrumentRange.getValue())

 .addOptional(Identifiers.DataItemType_Definition.getValue());

// Use the NodeBuilder to create the node

final AnalogItemType node = nodeManager

 .createNodeBuilder(AnalogItemType.class, conf)

 .setName("AnalogItem").build();

Instead of using the NodeId of the instance declarations (elements of the type), you can use their

BrowseNames or BrowsePaths.

5.4.2 Java classes for the nodes

SDK 1.0 contained implementations of the standard nodes in com.prosysopc.ua.server.

nodes.opcua. In SDK 2.0, the standard nodes are in com.prosysopc.ua.types.server opcua.

These are generated classes and therefore they behave and are used a bit differently. As

mentioned above, the nodes should be created with the NodeBuilder and they don’t have any

public constructor. They have similar setters and getters for the property and variable values as in

the old SDK. In addition, each object and variable node is available from the classes.

OPC UA Java SDK Migration to 2.0

9.7.2014 Page 7/8

If you have your own node implementations, you will need to modify them accordingly. The server

side node implementations are now named XxxTypeNode, whereas in the SDK 1.0 they were

XxxType. Also, you should not need to implement the sub nodes yourself in the Java types, but

you can rely on the NodeBuilder to create the structure for you. You just need to ensure that the

type definition defines the structure – and specifies the ModellingRules as well for the instance

declarations.1 See the MyEventType and MyNodeManager of the new SampleConsoleServer.

5.5 IoManager
IoManager includes new overridable methods, beginRead, beginWrite, endRead & endWrite,

which can be used to handle complete read/write calls or just to prepare communications for the

individual value settings.

5.6 EventType and EventManager
The EventManager itself is not changed very much. Triggering events is done similar as with the

old event types: you create an instance of an event or condition node and call triggerEvent() for

it.

The old EventType has been removed though, since now all the standard event types are

generated for you. And you can instantiate new event objects using NodeManagerUaNode.

createEvent(). See MyNodeManager.sendEvent() of the new SampleConsoleServer.

If you need to override your own event or condition types, note that the new standard types are

now XxxTypeNode, instead of XxxType.

This affects also the EventManagerListener, which must refer to the new node types instead of

the old ones.

5.7 HistoryManager
HistoryManager includes new overridable methods, beginHistoryRead, beginHistoryUpdate,

endHistoryRead & endHistoryUpdate, which can be used to handle complete read/update calls

or just to prepare a history dataset, which is then used when retrieving individual histories for

specific readings. The begin methods can return a custom dataset (anything you need), which is

then provided for the following methods as a parameter.

The same change applies to HistoryManagerListener.

You will need to modify your HistoryManager or HistoryManagerListener implementations

according to the new method signatures.

6. Code generation and nodes
One of the biggest changes with SDK 2.0 is the code generator (codegen), which can be used to

generate Java classes out of UA Nodeset definitions (in the Nodeset2.xml format).

The nodes used for the OPC UA standard types have now also been generated. This will lead to

some changes, most notable in how the nodes must be constructed in the server side.

1
 Instance declaration is the object or variable of the type. It defines how the respective instance in the actual object

or variable should appear.

OPC UA Java SDK Migration to 2.0

9.7.2014 Page 8/8

In practice, this will affect the Server object (available from NodeManagerRoot.getServerData())

and the condition types. Since the nodes have also had a lot of functionality written into them, it is

possible that the changes may affect your application.

The standard code-generated classes can be found in packages

 com.prosysopc.ua.types.opcua contains interfaces for each UA type

 com.prosysopc.ua.types.opcua.client contains client side implementations

 com.prosysopc.ua.types.opcua.server contains server side implementations

The Java interface for each UA types is generated as xxxType, the corresponding client side class

as xxxTypeImpl and the server side class as xxxTypeNode. For example, AnalogItemType,

AnalogItemTypeImpl and AnalogItemTypeNode. In addition, there are Base-classes for each

class.

On the client side, the getNode methods from AddressSpace are overloaded with ones that take a

Class parameter, therefore you can now call

AnalogItemType node = uaClient.getAddressSpace().getNode(NodeId,

AnalogItemType.class)

See the documentation for the codegen for more details on the usage of it and the new nodes.

Note that they are now available on the client side as well!

For the respective changes applied to the server, see 5.4 and 5.6.

